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Abstract. The biological membranes play fundamental rolemany of life’'s processes. Many of these processes
electrical, and the membrane, is one of the phystates of nerve cells that can be measured io.vithe flow of
various ions through membranes produces electgoatents causing changes in the membrane poteritred. pulses
observed in the voltage are called action potestiddere, we are particularly interested in the fueqcy at which
action potentials are generated and what informato@n be carried by their firing frequency. Variommathematical
models have been formulated, describing importeatuires of this kind of problem. All models areceleal circuits
of the “flush and fill” kind, where a charge buildg and then is released within a circuit. This papresents some
physical aspects of these processes with speciph&sis on a nerve cell's electrical behavior andecial and
simplified mathematical model. According to thereunt literature, the Hodgkin—Huxley (HH) mathematienodel
published in 1952 by Hodgkin and Huxley is a ma&occess in characterizing the action potential afgaid axon.
The Fitzhugh—Nagumo (FH) mathematical model is icemsd a simplification of the Hodgkin—Huxley (Hkpdel.
This model is a second order ODE and a reintergretaof the model developed by Hodgkin—Huxley (Hkbich
deals with the variation in time of quantities, akdd to the potassium and sodium conductance inattu. It
corresponds to an electrical circuit composed Hinaar system coupled to a nonlinear one, invohéntyinnel diode
in a flush-and-fill circuit. It is also known th&itzhugh considered the Bonhoeffer—van der Pol {BaxdRiation as a
simplified alternative mathematical model. This @agnalyzes the non-linear dynamics of the FitzhiNggumo (FN)
mathematical model and its stability.

Keywords: Fitshugh-Nagumo model, Stability, Non-ldeal Dymesn

[. INTRODUCTION

The first complete mathematical model of neuronahmbrane dynamics was published by Hodgkin and Huixie
1952. This work fortified the development of quéattive approximations, in order to understand theploysics
mechanism of the action potential generation. Theh&Egh-Nagumo equation is a simplification of tHedgkin-
Huxley model. However the Hodgkin-Huxley equatiare able to reproduce many features of neuronahrdics,
containing several state variables and a large evumlbempirical constants (Hodgkin, Huxley, 1952).

The Fitzhugh-Nagumo clamped nerve equation is argkorder ODE, a reinterpretation itself of the rfou
dimensional Hodgkin-Huxley dynamic system that demith the variation in time of quantities those aglated with
the potassium and sodium conductances in the &wxamnin, 1987). It corresponds to an electricaluircomposed by
a linear system coupled to a nonlinear one, inmgha tunnel diode in a flush-and-fill circuit. & also known that
Fitzhugh (Fitzhugh, 1961) considered the Bonhoeffan der Pol (BvP) equation as a simplified altévea
mathematical model. The differential equations espnting the (BvP) model are very similar to thiveen Van der
Pol; these are, in dimensionless form:

. ( Xi )
X1=C X +X o= 3—+I
(1)

X,=- % (},— atbx,)
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where X, represents the membrane’s action potential X, depresents the sodium gating variable. The paemset

b andc are constants related to the physiological sththeoneuron, whera is potassium'’s potential of equilibriurn,
is sodium’s potential of equilibrium, amds the amplitude corresponding to the inverse tifh@ constant (determining

how fast X; changes relatively t X, ). They satisfy the following constraints:

1—2—b<a<1

3
0O<b<1 (2
b<c?

as introduced in (Fukait al 2000) by modifying the equations of the Van-detf-flaxation oscillator (Nagumet al,
1962).Although the variables have no exact physichl interpretation, for suitable parameter vaJube qualitative

behaviour of X; is similar to that the voltage variable of the Igkih-Huxley equations (Hodgkin, Huxley, 1952) and

that of X, to the “recovery” of gating variables. The varibtepresent the forcing of the cell by an extertiatsius.
Nagumo (Nagumo et al, 1962) built a circuihgsa tunnel diode to the nonlinear element (chBnnédose physical

representation of the model presented by equatbistzhugh (Fitzhugh, 1960) is shown in FigureSince then the
“EqQ. (1)” become better known as "Fitzhugh-Nagunuxel."

Current Resistor
Inductor
¢ Power
Supply
Y
Capacitor ‘ Tunnel
” Diode
(Voltage)
h 4

Figure 1.The analogical circuit of the Fitzhugh-Nagumo model

The “Fig. 1" shows one of the functions of the fiogllular membrane, that it involves all cellsaltows (or to
block) the chemical substance ticket, in accordanith the necessities of cellular metabolism. Betwethese
substances diverse types of ions are meeting. &sghssess positive or negative electric load, afrpposing loads,
the long one of the membrane tends to line ugf bne side and another one of it, generating actrédeension through
the membrane. In the case of a neuron, this tensioatweer60 and70 m\/

The nervous impulse is caused by a sudden variafitims tension; it is caused by a variation ie toncentration
of ions, mainly potassium, concentrated insidehef teuron, and sodium, outside. Most of this viarais caused by
the potassium transference to the exterior of dile The tension at that point of the neuron quiaddmes return to the
normal, but the variation if it propagates longihally (extension of the neuron that loads the nasvimpulse), is as a
wave. This variation of located tension spreadimmgugh the neurons constitutes the nervous impulse.

The extremities of the prolongations (axon and dés) of the diverse neurons are connected buphgsically;
two adjacent extremities remain to a certain distagpart called the synapse. When the nervous smgutives in the
extremity of an axon or dendrite, chemical substanethe neurotransmitters - are set free insideen§ynapse. These
substances transmit the electric signal of the Ilegpdor the adjacent cell, making the nervous imsuthat is
transmitted from cell to cell.

These phenomena constitute the base physical-ctngraofsthought, emotions, perception of the fivexsations of

heat, cold, pain, state. The discharges of epiegises have the same nature of the nervous iegufsuch crises
depend, therefore, of the balance between chesutmstances in the nervous system (Doi and Kumagai,).
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In this work, we mention that this paper is orgadizas follows:. In Section Il, we analyzed andcdésed
equilibrium points of system of Fitzhugh—Nagumo mlo@FN). In Section Ill, we analyzed and discussed the Ktabi
of the Fitzhugh—Nagumo (FN) mathematical model.Skection 1V, we presented the non-linear dynamicghef
Fitzhugh—-Nagumo (FN) mathematical model. In Sectipnve make some concluding remarks about this vemdk in
the final section, we do some acknowledgementsantwe list the main bibliographic references used

2. EQUILIBRIUM POINTS OF SYSTEM.

Richard Fitzhugh and Nagumo JS trying tocdbe a model that would allow to represent a maweurate and
precise characteristics of electrical impulses gléime neural membrane, such as the existence afeshild of
excitability and the generation of pulse trainsiextby electrical currents external, with sevetalies, these scientists
concluded the following ordinary differential egioais to describe what would be observed in the Wiehaf the
phenomenon in question(Asssal, 2010):

w=f(wa)-v+z

vV =bw-w 3

In this system of equations, the tdr(w, a) is a cubic function, described byw, a) = v (v - a) (1 - v)the cubic
equation is related to the phenomenon of ionicexurThe ternf (w, @) also represents the nonlinearity in the model of
Hodgkin-Huxley.

The model in oversized in Eq. (3), givesawery accurate description of reality biophysitserve cells, it also
gives us a mathematical idea of the mechanism afaheexcitability, the state of rest and other meelectrical
characteristics easily identifiable in the geometfyphase spacéu, w). In effect, this provides a phase space of
gualitative explanation of formation and decay dfan potential.

A diffusive term was later incorporatedoirthe equation Eq. (3) by Panfilov (Panfilov, A.\Pertsov, 1984),
trying to get better represent the refractory mkoa the study of reentrant arrhythmias such agrieetar fibrillation.

°w
w=——+f(wa)-v+
v (w,a)-v+z @

Vv =e(w-pw)

This system of equation has been calledtireadifusive model of Fitzhugh-Nagumo type “PusimchKinetics”
linear, this model is also called the Fitzhugh-Nagumodel of spatially distributed.

To complete the interpretation of the dynasf the Fitzhugh-Nagumo system in biophysical,nuest perform
the following association: the variableas the voltage across the membrane, the paramegpresents the electrical
current applied to the nerve cell, and the variables a variable system recovery without specifipbysical meaning.

Examining the Fitzhugh-Nagumo model, we rbe crucial fact that the quantities associatethi® system of
equations are dimensionless. This means that flggal equations that make up the Fitzhugh-Nagunoalehwere
scaled in order to make the quantities dimensiesMemdw. This is interesting when qualitatively analyziglynamic
system without a concern with respect to units @ased with the quantities involved.

After a few years, scientists Panfilov and Hogewgnfilov, Hogeweg 1993), noted the model of FigtinNagumo
equation in its classical form, is not very useful detailed studies of atrial while modeled asakieg the spiral or
vortex. (Fiedler-Ferrarat al, 2004)

For this reason researchers have suggested maidifisaof the original equations to favor the ocenge of
instabilities of waves which are properties of thedel and not due to numerical artifacts. Amongower models
developed for this purpose include: the continumaslel of Aliev-Panfilov (Aliev, Panfilov, 1996)h¢ linear model
from Bar-Eiswirth (Bar, Eiswirth, 1993), the linearodel of parts of Panfilov, Hogeweg (Panfilov, ldageg 1993),
among many otherwise exist.

Seeking equilibrium points in the system of diffietial equations of Fitzhugh-Nagumo, Equal (3) ¢vozthe
derivativesdv /dt anddw /dt, and isolate the parameteiin the two equations of the system and we get:

w=v(@-v)v-1)+I (5)
w =v/c (6)

The set of infinite pointsy, V) that satisfy Eq. (3), correspond to states incitihe voltage applied across the cell
membrane, represented by the parametetoes not vary over time, ie ¥f a constant, thedv / dt will always be
numerically equal to zero, regardless of the vaithe applied voltage. If we choose a conditioat ttomplies with
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this characterigt, then we can say that the membrane will remadefinitely with the same voltage applied to
structure because it will be in equilibrit

Similarly, if we choose any poifw, v) that satisfies the Eq. (6)ve select a set of states in whihe parametew
(variable recovery) is any constant, implying tiederivative is always zel

Each of these Eq. (5) aiitl]. (6) represents a curve in state spaceersusy, this system, which in this ca
corresponds to the graph of two functicw (v). In fact, Eq. (5xepresents a third degree polynomial equationEg.
(6) a straight line without constant terms, ie the livi# always pass through the origin of the pl«0.0). The points
where these curves intersect correspond to equifil points of the system. These curves are called Naodllines of
the system, since they have their first derivativesierically equal to zet

You can then check under what conditions are neéateall the parameters of the model guaranteegtistence o
one, two or three equilibrium point. We also ndtattthe parametd does not interfere in our analysis, since it wit
appear in Eqg. (7) and Eq. (8§, if we consider the value b is nonzero, it will not influence the point of syst
balance.

The number of intersections that occur in the csirveder consideration in the plv versus w depend on the
relationship between thedlination angle of the linEq. (7) and the slope of the inflection point of the cuhinctior,
Eq. (2).

We can find the slope of tleabic functiol, Eq. (7) calculating their points of inflection for thigjeal to zero th
second derivative of the functian with respect tw, we find the following value:

V=@+1)/3 @)
The slope of the cubic curve, defined by the fuortw, for this generic value of, given byEq. (3),shall:
(@®-4a+1)/3=M (8)

The “Fig. 2"illustrated the three possible situations of equiilim in the plan« versuswn, where the line was
identified in Eq. (2with the color red and the cubic funct, Eqg. (7),with the blue and highlighted with aack dot
equilibrium (intersection of the curveiFrom the graphs, we can conduct a detailed geameetelysis to analyze tt
conditions of the occurrence or neguilibrium systen

By keeping fixed the parametdrand the change of the paramec has the consequence of change in the ¢
angle of the line in Eqg. (6)Thus, if we set the value a |, just changing the value af we get one, two or thre
intersections, turning straight sets in just onmpthe origin (Fiedler-Ferrarat al, 2004)

. L L L L
-8 -1 056 o 05 1
W

)

Figure 2.Phase Portrait (a) one poimf intersection. (b) two points aftersection, and (c) thri points of intersection.
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Depending on the value of the parameters ims¢he system of Fitzhugh-Nagumed, or |) can get one, two or
three crossings (equilibrium points) of the lingtwihe cubic function at the level v from w. If thgarameted / ¢
is numerically greater than M, there is onlyonedi point, otherwise, may present situations with or
three fixed pointsbalance (Guerraet al, 2002)

If you keep unchanged the parameter c, argl the parameter (external excitationcurrent) causes a shift of the
cubic curve in the direction of the axis w. If therametef get a positive addition, the change will be upwsaid, for a
positive w-axis, otherwisethe offset is to the riegaw-axis.(Guerra et al, 2002)

3. STABILITY

In this section, the stability analysis of the rnioeér Fitzhugh-Nagumo model is consider&d.equilibrium statec*
is said to be stable if and only if, given 0, there exists (g)> 0 such that fol| x (0) - x*||< J (¢), then ||x () — x*|| <
¢ for all t > 0. Thus, there is a neighborhood of radéus the vicinity of equilibrium, so that, for a g initial
condition that belongs to the neighborhood, thgettary corresponding to this initial condition ngver away more
than a distance (Monteiro et al, 2006).

An equilibrium statec* is said asymptotically stable if and only if thendsts a > 0, so that for||x (0) — x| < o
then||x (t) — x*]| — 0, for t — « (Monteiro et al, 2006).

Finally, if the trend moves away from the neighlmwt radius: in a finite time, the equilibrium is said unstable

If the system meets some mathematical conditiores,can approximate the area or part thereof of dinear
system by a system of linear equations. This psoisesalled linearization of nonlinear systems.

An important note is the fact that only in case®ltiptic points (Real part of eigenvalue= 0) the linear analysis
can not be applied because it can bring resulitssicure or even erroneous, in which case the tshmsld be studied
higher order system (Monteiro et al, 2006).

Applying the linear approximation method, you caview more quickly and simply the behavior of noahr
systems, which start in the neighborhood of anligjiuim state. For the system of nonlinear difféfal equations of
first order,f (x, y) andg (X, V).

We get close to the equilibrium stdte= (x*, y*) the following expansions:

3—f= fxy) = T(x* y%) +%(X—X*) +—3;(y—y*) o

9)
dy— — * * dg * dg * (
— = = +—=(x- +—=(y- + ..
™ g(xy) =g(x* y* OIX(>< X*) dy(y y*)

If we want a more accurate valuedxf/ dt or dy / dt, we must continue to develop the above expansidraylor
series with higher order terms. We can then chaosew coordinate system in the plane so that thdilegum P is
changed from its original position for the origihtbe system, making our system analysis.

Defining the new variables as:

X () =x () — x*
YO=y@®-y (10)

The approximation above is valid only for pointsyelose to the fixed poirfe* = (x*, y*) if and only if X(t) and
Y(t) describing the local behavior of solutions neé&y otherwise this approach is false.
The following equations, which is the time domaia determined by:

X _ dx av _dy

dt a2 g T de (11)

Neglecting higher order terms of the system of &qna (9) and defining fx*,y*) = g(x*,y*) = 0, we obtain:

dl = ix + iY

dt dx dy

(12)

d_Y = d_gx + d_gY

dt dx dy

Using the matrix notation, we can further simplifie problem, and we get the following equality:
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dz (t)
T2 (11)

whereZ(t) is defined as the column vector of state variabfdhe system and A is a Jacobian matrix.
Applying this in our work, we have the matrix ofidiarization for the Fitzhugh-Nagumo model consiugli= 0,
without external excitation current and also coesity a fixed point in the neighborhog, w), we have:

B

A:{—3(vlj)2+2(a+1)vo—a —1}

A

(12)
b - bc

Therefore, working a little our system of Fitzhughgumo equations, we linearized point very close to
equilibrium, as will be shown below:

dZ(t) _
== Az
[dv/dt} _ {— 3(v,)? +2(a+1)v, —a —1“@
dw/dt | b ~be|
(13)
= (-80%)" + 2(a+ 1V, ~ @)V, - w
d—W:bv—bcw: b(v - cw)
dt

The behavior of the system under considerationtéegrally related to the eigenvalues of the matpresenting
the linearized system.

Analyzing the two eigenvalues corresponding torttadrix of the linearized system, we can easilysifggthem
from the pair of eigenvalues found with the chaafjparameters.

According to Equations (13), the system eigenvalyesre:

A, = _(a+ bc] . (a-bc)* -4b w4

2 2

Analyzing these eigenvalues analytically, we cardgtin detail the states of equilibrium exist fbist particular
situation:

1) If the eigenvalues, , are real numbers, the condition must be satigfiati(a - bcf is numerically greater
than or equal tdb
2) If the eigenvalues are negative, one has to [ftifid condition thaa + bc) >V((a - bcf - 4b) > 0).
3) If the eigenvalues are positive, one has to fulfie condition that (a + bc) <((a - bc)2 - 4b) , and
simultaneously/((a - bcf - 4b) > 0
4) If the eigenvalues are complex numbers of the farmBi, we have to satisfy the condition that- bcf <
4b and simultaneously the condition tlaat bc is different fronD.

In all situations described above, and with a nmatitecal development of equations and inequalitientroned
meeting the initial conditiong> 0, ¢ being greater than or equal to zero, and extextation current = 0, we have
the steady stat@,, Wo) = 0 is always asymptotically stable in the system.

We must emphasize that all our analysis has beesiajged for the case that there is no externakocarstimulus
on the membrane, it = 0. Under these conditions, the experiments show ttiatphysiological resting potential
behaves like an attractor, ie, if there is a smztérnal excitation in the membrane potential, hil’e as an immediate
response to recovery and return to its initial gala fact shown in our analysis shows a behavitr il always be
stable.

We should also pay attention to the character adllstability analysis obtained by a linearizatithve solutions are
approximate solutions, valid for short distancesiad the equilibrium point.
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4. NON-LINEAR DYNAMICS.

In this section, in order to carry out numericalegrations of the Fitzhugh-Nagumo system, we useulik
(Matlab)1. A block diagram of the Fitzhugh-Nagumo system vahin “Fig. 3”.

. >
f(u) 1 x1
L —» 3 > x
Fcn :
Current |- Integrator membrane's action
potential
0.5 p|+
potlassium's potential >
of equilibrium
L |+ 1 x2
- amplitude Integrator. sodium gating
corresponding variable

to the inverse of a time constant

> Eo

sodium's potential XY Graph
of equilibrium

Figure 3. TheSIMULINK/Z model for numerical simulation of the Fitzhigh-Nagusystem.

In the current literature, there are some studiegshe model (Hoppensteadt, 1986) and “Fig. 4" flates the
behavior of the Fitzhugh—Nagumo mathematical mdueljsing “typical” numerical values for the parararsl = 0.5,
a=0.7,b=0.8andc=0.8.

The equilibrium point of the dynamical systenPis (1.44842, -0.93553)The system eigenvalues d@re -0.8690
+0.8646i. The negative real part indicates that the systestable, therefore the equilibrium polis a stable focus
and the trajectories described an orbit spiral eoged to the point.

“Fig. 4-d” is not exhibited the appearance of chdezause it has a Lyapunov exponent negative:-0.85

“Fig. 5” illustrates the behavior of the Fitzhugha@umo mathematical model, by using numerical vafoeshe
parameter$ = 0.5,a=0.7,b=0.1andc = 0.8.

All images contained in “Fig. 4, 5 and 6", were slated and designed by the authorin the softwaratlg¥) (I
2010.
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Figure 4.(a) Time History for x (b) Time History for x (c) Portrait Phase (X %) and (d) Dynamics of Lyapunov expoents.

1F
0.5
oH
~
x
-0.5
1t
°
-1.5r
0 20 40 60
b) Time
Dynamics of Lyapunov exponents

Lyapunov exponents

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

C) - “x ’ d) t

Figure 5.(a) Time History for x (b) Time History for x (c) Portrait Phase (% %) and (d) Dynamics of Lyapunov expoents.

The equilibrium point of the dynamical systenPis (0.84437, -1.44370)The system eigenvalues dre 0.1185 +
0.6867i. The negative real part indicates that the sysgeonstable, therefore the equilibrium point P nsumstable
focus and the trajectories described an limit cytteg 4-d” illustrated the periodic behavior petio (4; = 0.006).

The “Fig. 6” illustrates the behavior of the Fitgfi+-Nagumo mathematical model, by using numerichlegafor
the parameters= 0.3,a=0.01,b=0.5andc=0.2




Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

The equilibrium point of the dynamical systenPis (0.39020, -0.38039)The system eigenvalues are 0.3489 +
0.2261i. The negative real part indicates that the sysgeonstable, therefore the equilibrium pokhis an unstable
focus and the trajectories described an orbit bpwaverged to the limit cycle and in “Fig. 6-d” i@t exhibited the
appearance of chaos, because it has a Lyapunonexpoegativei; = 0.02.

[uN
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40 60 80 100 b) Time

Dynamics of Lyapunov exponents
T T T T T

T T T T
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0.81 q
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o
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0 10 20 30 40 50 60 70 80 90 100

C) d) t

Figure 6 (a) Time History for x (b) Time History for x (c) Portrait Phase (% %) and (d) Dynamics of Lyapunov expoents.

5. CONCLUSION

One of the functions of the fine cellular memtaamvolved in all cells, is to allow (or to block)e chemical
substance, in accordance with the requirementgloflar metabolism. Between these substances divgpes of ions
meet. As they possess a positive or negative @dotrd, ions of opposing loads along the membtand to line up on
either side, generating an electric tension thrahghmembrane. A nervous impulse is caused by desudariation of
this tension, caused by a variation in the conegiotn of ions, mainly potassium, concentrated iaglte neuron, and
sodium outside. Most of this variation is causedhsypotassium transference outside the cell. &hsidn in that point
of the neuron quickly comes back to the normal dn#,the variation propagates along the axon (sit@nof the
neuron that loads the nervous impulse), as a wakes variation of the tension spreading through tieirons
constitutes the nervous impulse. The extremitiethefprolongations (axon and dendrites) of the rdiweneurons are
connected — in reality, they do not connect phylsicawo adjacent extremities remain at a certastahce, the small
space between them called is called the synapsen\Whe nervous impulse occurs in the extremity rofagon or
dendrite, chemical substances—the neurotransmitigrs set free inside the synapse. These subst#aresnit the
electric signal of the impulse for the adjacent,aabking the nervous impulse to be transmittednficell to cell. These
phenomena constitute the basic physics—chemistrthafght, of emotions, of perception of the fiveeliegs and
sensations of heat, cold, pain, etc. As the inwbldischarges in epileptic crises have the sameaats the nervous
impulses, such crises depend on the balance bettwanical substance present in the nervous systethis work, a
dynamics of the Fitzhugh-Nagumo model proposedlifkigh, 1960; 1961, Nagumo et al, 1962) is investjand we
verified the behavior stable. If there is indicatiof chaos in the system in question, we can rdlaen physically
with epileptic seizures, where we could not conitmgpulses, not seeking it shapes its instability.
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