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Abstract. This paper presents a proposal for a new extended Jacobidmoghé&ased on kinematic constraints, exploring
only singularities of the kinematic chain. It is presentkd tevelopment of the new extended Jacobian as well as their
properties. These method can be applied to analyze the lehafwedundant robots on perfoming a task. Redundant
robots are used to perform tasks which require some typetad exobility, for example when it is necessary to avoid
obstacles inside their workspace. In general the kinematiizindancy condition does not allow to find the solutions
the solution of inverse kinematics directly. Methods basegdseudoinverse matrix and extended Jacobian are gegerall
useful for solving inverse kinematics for redundant robbtswever, these methods have limitations like metric wisl
and algorithmic singularities that do not belong to the kiratic chain. These limitations decrease the robot’s apilit
to perform movements, while away from their kinematic damifies. Based on screw theory, the method of kinematic
constraints consists in add Assur virtual chains to perféasks that retricts movements, such as trajectory ger@vati
collision avoidance, among others. To validate the propasaexample for redundant rob@3 R is developed.

Keywords. Redundant robot, extended Jacobian, Strutural singuésit
1. Introduction

A robotic system typically consists of a mechanical marapr an end-effector, a microprocessor-based controller
and a computer. A mechanical manipulator comprises selgkalconnected by joints forming a kinematic chain. Some
of the joints in the manipulator are actuated; the otherpassive. Typically, the number of actuated joints is equéhé
degrees of freedom (Tsai, 1999).

Parallel robots are a class of manipulator that become nwmplex as a growing number of joints and circuits. This
complexity is evident in the kinematic and dynamic modelsother factor that have to take in account, this kind of robot
is classified as redundant (Tsai, 1999).

The kinematics modeling requires a systematic stratedytiwld be attend, as possible as, all these aspects ridated
the complexity of the kinematic chains of robot manipulatdro surround such complexities connected to the kinematic
manipulator modeling has been used the Davies method agsoevith the Assur virtual chains. This methodology is
also called method of kinematic constraints Camgioel. (2009).

The Davies method are extensively studied in Davies (1981d,discussed in Campesal. (2009) and Simast al.
(2009), provides to achieve the differential kinematic lddr closed kinematic chains with several loops. The megtho
equation relate the velocities of the passive joints anddlaxtuated joints. So, the kinematic chain can be now filési
as a system with virtual and real joints.

Using the method of kinematic constraints, in some caseslhwirtual joint are actuated, and as consequence the
passive joints belonging to the virtual chains will be pdrthe secondary joints. In practice, kinematic analysishef t
parallel robots imply to use only "real” passive joints, lglihe velocities and positions computed for the secondaityal
joints have no use. The presence of secondary virtual jointthe kinematics model requiring greater computational
effort in such analysis. It is interesting to set up strasdo eliminate the secondary virtual joint from the moddie T
differential model based on the screw theory allows to elate the screws of secondary virtual joints, through reciplr
screws.

Reciprocal scred” represents a set of forces and moments applied over a rigid it moves along of a infinestesi-
mal screw and that doesn’t produce work (Gibson and Hun)}L9A this paper the concept of reciprocal screw is used in
a way to eliminate of equation model the screws of the virsgabndary joints from the kinematics model. The proposed
method is applied in a simplified redundant robot, where thed fiesults is an extended Jacobian with only structural sin
gularities. The classical extended Jacobian presentedillie] (1985) and applied in Antonelli and Chiaverini @) to
URV's, is a strategy where additional tasks are includedrincsural Jacobian making it invertible. The classicakexted
Jacobian developed in Baillieul (1985) has, generallyglarities that don’t belong to kinematic structure.

The main contribution of this work is present a systematithme to eliminate secondary virtual joints or its screws
from differential kinematic model, obtained from the methaf kinematic constraints. Also, it will be shown an new
extended Jacobian to redundant robots with only strucsimglularities as result. The present method and its vadidat
will be proved using &3R planar redundant robot with a obstacle inside in its workepa
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2. Fundamental tools

The approach, here proposed, is based on the Davied methecke whe screw displacement are successively applied
(Tsai, 1999), together with the Assur virtual chain congeyftich is briefly presented in following sections.

2.1 Screw theory

The general spatial differential movement of a rigid bodysists of a differential rotation about an axis, and a
differential translation along the same axis named theirtaheous screw axis. The complete movement of the rigid
body, combining rotation and translation, is called screswement or twist and is here denoted by The ratio of the
linear velocity to the angular velocity is called pitch oétbcrew denoted ds

The twist may be expressed by a pair of vectdrs: [wT; VpT]T , Wherew represents the angular velocity of the
body with respect to the inertial frame aihf represents the linear velocity of a poiRtattached to the body which is
instantaneously coincident with the origihof the reference frame. A twist may be decomposed into itsnitagde and
its corresponding normalized screw. The twist magnitgde either the magnitude of the angular velocity of the body,
llwl|, if the kinematic pair is rotativeh( = 0) or helical, or the magnitude of the linear velocify,| , if the kinematic

pair is prismatic § — oc). The normalized screwis a twist of unitary magnitude, i.e.
$ = $q @)

The normalized screw coordinat®ss written as:

. s;

$_|:SOZ'XSZ'+}LSZ':| (2)
wheres; = [slx,sLy,sz] denotes an unit vector along the direction of the screw aads, vectors,; represents the
position vector of a point lying on the screw axis.

Thus, the twist in Eq. (2) expresses the general spatiaréiftial movement (velocity) of a rigid body relative to an
inertial reference framé&® — xyz. The twist can also represents the movement between twoeadjinks of a kinematic
chain. In this case, twid; represents the movement of linkelative to link(i — 1).

More details of the screw theory and its applications candoed in the following works: Hunt (2000) and Davies
(1981).

2.2 Daviesmethod

Davies method is a systematic way to relate the joint vaixin closed kinematic chains. Davies derived a solution to
the differential kinematics of closed kinematic chainsvirirchhoff circulation law for electrical circuits. Theselting
Kirchhoff-Davies circulation law states that "The algabrsum of relative velocities of kinematic pairs along anyseld
kinematic chain is zero" (Campes al, 2009). This method is used to obtain the relationship betwke velocities of a
closed kinematic chain. Since the velocity of a link withpest to itself is null, the circulation law can be expressed a

> $igi =0 ®)
0

whereéi, ¢; represent respectively the normalized screw and the matmidf twist$; andn is the number of joints.
Equation (3) is the constraint equation which, in generaltmawritten as

Ng=0 (4)
whereN = [$1 $2 e $n] is the network matrix containing the normalized screwshfite signs of the screws de-
pend on the definition of the circuit orientation (as will begented later) (Campesal,, 2009), andj = [¢1 ¢2 -+ ¢n]

is the magnitude vector of the velocities of each joint.

A closed kinematic chain has actuated joints, here nameabpyijoints, and passive joints, named secondary joints.
The constraint equation, Eq. (4), allows the computaticthefsecondary joint velocities as functions of the primaiwt]
velocities. To achieve this, the constraint equation isreggyed highlighting the primary and secondary joint vities
and Eq. (4) is rewritten as follows:

N, N | =0 (5)
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where N, and N, are the primary and secondary network matrices, respéctied ¢, andg, are the corresponding
primary and secondary magnitude vectors, respectively.
So, Eqg. (5) can be rewritten as

Np(jp'f'qu's =0 (6)

The secondary joint position can be computed by integrding(6) as follows:

t t
qs(t) — ¢5(0) :/ Godt = —/ NN, gt (7
0 0
2.3 Assur virtual chains

The concept of Assur virtual kinematic chain, or just vittahain, is essentially a tool to get information on the
movement of a kinematic chain or to impose movements on aratie chain (Campost al., 2009).

This concept was first introduced by (Campatsal, 2009), which defines the virtual chain as a kinematic chain
composed of links (virtual links) and joints (virtual jog)twhich possesses three properties: a) the virtual chaipes;
b) it has joints whose normalized screws are linearly indépat; c) it does not change the mobility of the real kinemati
chain.

From the the third property, the virtual chain proposed bgriposet al., 2009) is in fact an Assur group, i.e. a
kinematic subchain with null mobility such that, when coctieel to another kinematic chain preserves its mobility ¢Art
bolevskii, 1970-75).

2.4 Thedirect graph notation

Consider a kinematic pair composed of two linfksand £; ;. This kinematic pair has its relative velocity defined by
a screw$; (joint 5) relative to a reference frante. Joint; represents the relative movement of the lifkwith respect
to the link E; 1. This relation can be represented by a graph (Carepak, 2009), where the vertices represent links and
the arcs represent joints.

Now, studying a simple graph, where joints part of two closed chains. For each closed chain the tiditgction
is chosen (Campost al,, 2009). In a direct mechanism graph, if the joint has the sdineetion as the circuit, the twist
associated with the joint has a positive sign in the circgitagion (constraint equation on Eq.(3)), and a negative iig
the joint has the opposite direction to the circuit.

3. Redundant robots and its solutions for inver se kinematics

A robot is said redundant when the number of joints availtdlee actuated is greater than those needed to perform
the task. This can be best understood by making the rel&ijphbgtween the joint space and Cartesian space.

The joint space is defined by the number of joints that compluseobot (here, is called degree of control), while
the Cartesian or operational space is defined by the numbayasflinates used to describe it (connectivily If in a
task onlyr coordinates are be used, andrsa n, then there are degree of redundancy for that task, wherethree of
redundancy is. — r (Sicilianoet al, 2009). Redundancy can be formally defined as the differbbetween the degree
of control and connectivity of a kinematic chain (Martingla@arboni, 2007).

The differential kinematic model expresses the end-affdotear velocityp and the angular velocity as a function
of the joint velocitiesj by means of the Eq. (8).

v—{fj]—J(q)q ®

where the matrix/ (r x n) is the robotlacobianmatrix and determining the differencial mapping betweenjtint space
and Cartesian space agé-= [¢q, - - -, qn]T represents the joints velocities vectorAt's.

Equation (8) can be inverted, allowing to compute the joielscities according to desired end-effector velocityu3h
it can be written as in Eq. (9):

i=J (g )

whereJ~1(q) is the Jacobian inverse matrix.

The Jacobian, in general, is function of the joint posiijoepending on the configuration of the robot, the Jacobian
may not possess full rank and it implies that the robot is inrad@ion ofsingularity (Sicilianoet al,, 2009), what yield to
J(g) not invertible. Under this condition, Eq. (8) can admit afiriite number and the robot loses their mobility or, like
parallel robot, can increases their mobility.
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The Jacobian matrix of redundant manipulator has largestweun of columnsy than rowsr, since the dimension of
the space joint is greater than the dimension of the operaiace, i.e.p > r. So the differential inverse kinematics,
shown in Eq. 9, presents an infinite number of solutions. Toblpm is to find a systematic method to find among these
infinite solutions an suitable solution to a particular task

In the next section, are shortly discussed the methods fainganverse kinematics for redundant robots.

3.1 Differential inverse kinematic through M oor e-Penr ose Pseudol nver se

In a task planning, a simpler strategy is to distribute theiomoneeded to perform a task for all joints of the robot.
The purpose of this distribution is to minimize the energgdiby the joints in their movements. The solution can be
formulated as an optimization problem whose solution isibletd using Lagrange multipliers method (Siciliagtoal.,
2009).Thus the differential inverse kinematics can be esgd by the following relationship in Eq. (10).

q=Jv (10)

where the matrixJT = W=1(JT(JW~1JT)~1 is defined as the Jacobigseudoinversenatrix and the matri¥¥’ is a
suitable f x n) diagonal positive definite weighting matrix.

Changes in the optimization function allows the inclusiéwelocities in the joints that are projected into nullspace
of the direct differential mapping (Siciliaret al., 2009).

The pseudoinverse matrix of Jacobian is used in other résolstrategies, such as tiiask priority methodAntonelli
and Chiaverini, 1998), th@ask priority robust to singularitiegChiaverini, 1997) an@umped least squargChiaverini
and Siciliano, 1994).

The methods based on pseudoinverse have limitations such)ds the case of the matrid/, must to be set
variables in its main diagonal, through an empirical adjosthe numerical stability of the inverse kinematics dejseon
the trajectory and; c) problems occur caused by metric problof the pseudoinverse in the case of robots with structure
constituted by rotative and prismatic joints (Campbal., 2009).

3.2 Extended Jacobian method

The method of extended Jacobian solves the redundancy afsréirough a non-redundant system. This solution is
gotten by adding kinematic constraints in order to make #webian matrix invertible.

Constraints are based on functions of the foffy) = 0. In general, it uses the functidi(¢) as an approximation
of the energy of motion. This choice aims at optimizing thstribution of the energy through the joints of the robot
(Chiaverini, 1997).

Considering:(q) differentiable ong, we obtain the derivative on Eq. (11):

J

[H:[aﬁ&wq S we= a1
dq

whereJ. is the extended Jacobian andis the augmented vector of velocities of the end-effector.

The extended Jacobian method has a limitation, by insediggrithms singularities into differential model of the
robot, what difficult its implementation and uses. These s@wularities are not part of the robot kinematic chain and
should be also monitored. The singularities vary accortbrtge function(q) chosen.

Next section presents the proposed extended Jacobiamedbfeom the kinematic constraints.

4, Extended Jacobian from kinematic restrictions

This section presents a mathematical development basdtkdifterential kinematic model and on kinematic con-
straints, yielding to a equivalent extended Jacobian.

At the end of this section a study of the singularities shdves the proposed extended Jacobian does not introduce
algorithmic singularities as classical methods discussesection 3.2

The method is implemented inf283 R redundant robot with an obstacle inside its workspace. Tmsea the trajectory,

a PPR virtual chain is attached between the base and the end@ffetthe P3R redundant robot; and to collision
avoidance aR PR virtual chain is attached between the obstacle and theslifiear to jointC) of the P3R redundant
robot. Figure 1 depicts thB3 R redundant robot and Fig.2 depicts tA8 R robot with the virtual chains attached.

In the Fig (1) are showed thB3 R redundant robot composed by one prismatic joihiand three rotative jointsB,
Cand D; with links 0 (base),1, 2, 3 and4. Joint A has its direction indicated by a fixed unit vector with coosdes
[Pa, Qa, O]T . The PPR trajectory virtual chain is composed by prismatic joints andty and a rotative jointz and
links 5 and6. The RPR collision avoidance virtual chain is composed by two re®jointr.; andr.», a prismatic joint
pr and the links7 and8. The circuitsl and2 give the direction needed in the differential model by Davimethod.
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Figure 1.P3 R redundant robot with an obstacle inside Figure 2. P3R redundant robot with the virtual chains
its workspace. attached.

4.1 Methodology for elimination of the passive joint

The method of kinematic constraints have limitations askihematic chain becomes more complex, or according
to the task. This limitation occurs because of the presefcerews from the virtual chains oN, matrix. When the
position of secondary joints are calculated, using Eq.&fddl it is obtained the displacement for secondary joints fitee
virtual chain which has no practical application. To sirfipthe inversion of the matrixVy, it is necessary to eliminate
the screws of the virtual chains.

The elimination of secondary virtual screws can be perfartheough reciprocal screws. The reciprocal are arranged
in a matrix defined as annihilating matrix (Campsl., 2009).

The concept of annihilating matrix presented in (Camebal., 2009) to parallel manipulators is discussed below,
using theP3R robot.

By using theP3 R redundant robot with the virtual chains to impose trajgemand avoid collision shown on Fig.2,
will be shown that it is possible to eliminate from equatiotiee virtual joints from secondary matriX, making it
equivalent to the extended Jacobian.

Using the Davies method were obtained matridgse V.

qa
. N . N q.B R . . q.p'r
Nq — ?A %B $C $D AO AO (?C + 9 *$rz *$pz *$py Qrz =0
$4 $5 0 0 —$., —$., dp ~$,. 0 0 0 dpa 12)
q.TZ1 ‘jpy
q.rzz

The robot has four joints4, B, C' andD, whose screws that are part of the secondary matrix, togeitiethe screws
of the virtual jointsrz, andrz,. The velocities of the jointgz; andrz, are not necessary to compute the position of the
robot, so, it is useful to eliminate them from the secondaayrin N;.

To eliminate these screws (columns) from secondary matrdecond partition can be done as follows in Eq. (13).

) éA %B éc $D 4B { 0 0 } { s ] . _
Nsgs = G G ; + & & Lo = NsaGsa + Nspgs 13
! [ $A $B 0 0 qc 7$T21 7$7‘z2 Qrzo q pQsp ( )
4D

whereN,, corresponds to the screws of the joints of interest (hetedaltive) andV, corresponds to the screws of the
joints which there is no interest (here called passive).

The passive joints are eliminated using an annihilate m&tnvhich has the following structure on Eq. (14) (Campos
et al, 2009).
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Ly, | 0

K= 14
0 ‘ TefWNb.p('rL—r)Xd ( )

whereref Wh.,,» Whose dimension ig$n — 7) x d, is a set of reciprocal screws from secondary passive mafrjx
(Campos<t al,, 2009)(Martins, 2002).

The reciprocal screws represent a set of external forcegaqdes that do not generate movements on secondary
passive joints. Therefore pre-multiplying,, by IC, produces:

KN,, =0 (15)

To maintain equality is necessary that the Eq. (12) is réswrjtconsidering the Eg. (13), as follows in Eq. (16).

ICNpr + ICNsa(jsa + K:Nqusp =0 (16)

Using equality in Eq. (15) we have the Eq. (17).

’CNp‘jp + ’CNsaq.sa =0

17
The velocities of the primary joints are then obtained by @8).
q.p = _<K:Np)_1K:Nsaqsa (18)
So using the usual definition of the Jacobian (Eq. (8)), wehilag Eq. (19).
J = _(ICNp)ilKNea (19)

Considering the expression in Eq. (8), it can be observedritizg. (18) that the vectaj, represents the magnitudes
of the velocities of end-effector, increased with the magies of the velocities of the actuated virtual joints ad asg)

4sa represents the magnitudes of the velocities of activeganthe manipulatoP3R. So, the Jacobian expressed by the
Eqg. (19) is a desired extended Jacobian matrix.

5. Application of the method and obtaining the new extended Jacobian

To evaluate the method of elimination of passive joints, gpliaation was developed for the3 R redundant robot.

Consider the problem of trajectory generation and coltisieoidance fo?3 R redundant robot shown in the previous
and in the Fig. (2).

Taking as reference coordinate systély it is obtained the normalized screws for each joint of #8? redundant
robot and for theP P R trajectory virtual chain as following in Eq.(20).

. 0 . 1 . 1 . 1
$a4= P, $p = LoQa $c = LqQq + Loso $p = Zq
Qa _LaPa _Lapa - LZCZ Yd
. (20)
. 1 . 0 . 0
$T'Z - Te $p1, = 1 $py = 0
Ye | 0 1

where P, and @, define the direction of the prismatic joirlt; L, represents the displacement of the prismatic jaint
Ly, Lz and L, are the length of the link8, 3 and4; s; is the sin(6;); ¢; is thecos(0;); s;; is thesin(6; + 6;); c¢;;
is thecos(0; + 0,); 62, 63 and 6, are the angles of the joints of tie3R robot; the magnitudes,; andy, are given
by: vy = L,Qq + Losy + L3ses andyy = —L,P, — Laco — L3cog and the magnitudes, andy. are given by:
Te = Lq Py + Losa + L3sag + Lasazs andy. = —LqQq — Laco — L3coz — Lyco3a.

The coordinates of the normalized screws of B¥eR collision avoidance virtual chain, with respect to the chioate
systemO,. are given as in Eq. (21):
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R 1 R 0 . 1
82 = Py $pr = | Craip $2, = Dy + LrSrzp, (21)
—DPx srzlpl Pz — chrzlpl

where: p, andp, are the position coordinate of the base of the collisiondawce virtual chain@,) with respect to
coordinate system of the base of tR8 R redundant robot®,); ¢,,, is the rotation angle between the systethsand
O, taken in the direction in relation to the base coordinate systemh); ..., , 0., are the angles of the rotative joints
of the chain virtualR P R; and L,. represents the displacement of prismatic jpinthain RPR.
Aiming to simplify the development below, the anglg, will be considered equal to zero. This condition requires
that the coordinate system of the collision avoidance &lrthainO,, will be parallel to the base coordinate systém
Substituting the coordinates ﬁIzl andém2 in N, we have as result the Eq. (22).

0
0 0
0 0
N@p = 1 1 (22)
—Py TPy — Lrsrzl
Pz Pz + chrzl

Campos (2004) develops a systematic methodology for abtathe annihilating matrix. Using this procedure it can
be obtained the annihilating matrix f,,, as shown in Eq. (23).

1 0 0 0 0 0
0 1 0 0 0 0

K= 0 0 1 0 0 0 (23)
0 00 Lr (pxsrzl - pycrzl) LrCrzl Lrsrzl

So: a) knowing thatC N, = 0; b) applying the matrix obtained in Eq. (23) in the Eq. (17)esults in the matrices
KN, andICN,,, that can be written as Eq. (24):

0 1 1 1 -1 0 0 0
_ | Pa LaQa  LaQa+ Lisz x4 -z -1 0 0
ICNsa B Qa —L.P, —LoP,— Lic Yd ICNP n —Ye 0 -1 0 (24)
T3 Tq 0 0 0 0 0 -—L,

wherezs = L, (Pycrsy + QaSrs, ) @anday = —L,.((py — LaQy)¢rz, — (0o — LaPy)Srs, ).
By geometric inspection in the kinematic structure of Fig) if can obtained the following equalities in Eq. (25),
which help to simplify the equations.

Dy = Lo Py + Loca — LT‘CT‘Z1 Dy = LoQq + Lasy — LT‘S’!‘Zl (25)

The extended Jacobian matrix is then obtained by the Eq.ad8hows the Eq. (26).

0 1 1 1
J= P, —Losy — L3so3 — LySo3sa  —L3so3 — LySo3a  —LySo3 (26)
Qa Locy + Lzcas + Lacazy Lzcas + Lacaza Lycoza
Pacrzl + Qasrzl Llsr2172 0 0

and the vectors andg are given by:

. . . . T . . . . . T
v = [ Qrz  4pxz  4py YGpr } q= [ dA 4B 4qc 4D } (27)
Comparing the Jacobian of Eq. (26) with the Jacobian ohbdaiyeclassical methods, it can be observed that its last

line has the additional line that characterizes it as amnebe@ Jacobian. This line relates the vector of joint velesif
with the velocity of the actuated joint virtug)..
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5.1 Evaluation of the singularity

The extended Jacobian matrix obtained in the previousmsedllows to study some properties of tR8 R kinematic
structure. This section will discuss the singularitiesadticed by the virtual chain, using the determinant of the ne
extended Jacobian.

Initially the singularities of P3R robot are discussed using a methodology to study the sintgesafor redundant
robots (Nokleby and Podhorodeski, 2001).

5.1.1 Singularity for P3R redundant robot

Nokleby and Podhorodeski (2001) proposes a method to asdhessingularities in redundant robots. The method
is based on analysis of sub-matrices of the Jacobian. Sophliserved that the singularity condition/3 R redundant
robot is achieved when:

o O3=tkym (ks =0,1,2,--) and;

e the angled, is equal to—0s, thus the angle between the prismatic jaihtind the link2 has magnitude equal to
+(2k2 +1)5; k2 =0,1,2,--.

Making k; = 0 e ko = 0 it has the configuration shown in Fig. (3).

-
x $Py

P

LT

Figure 3. Singular condition faP3 R redundant robot.

It can be observed that trajectories commanded in the pdipdar direction to the prismatic joint can not be
performed. This restriction of movement indicates a siagabndition.

Now based on the determinant of the extended Jacobian n{&tix(26)), are analyzed the singularities imposed by
the collision avoidance virtual chain.

5.2 Singularities of the P3R robot with kinematic restrictions

Computing the determinant of the extended Jacobianit has as result Eq. (28).

DJ = 7L2L3(Pa02 + Qa52)5r21—2—3 (28)

wheres,.,, _o_3 is thesin(0,.,, — 02 — 03).
Analyzing theD it can be observed that the singular condition is achieveldutwo different conditions:

e P.oco+ Q(LSQ =0; and Spz—2—-3 = 0

Considering thaf.; and L, are constants and different from zef®, is zero only if one of the above conditions are
achieved.
From the first condition it has the Eq. (29).

Lo _ 52

Qa C2
in other words, geometrically, the angle between the veditection of the prismatic jointl of the P3R robot and the
link 2 is equal to+(2k + 1) 7 with k£ = 0,1, 2, - - -. This condition is shown in Fig. (4).

(29)
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’T $px $px
s I
Figure 4.1° singularity condition Figure 5.2"¢ singularity condition

The angle formed by the prismatic joidthas as complement to the anglehe anglef,, which, by Eq. (29), must
be equal to-0,. By this equality, the singularity exists if the directiohtbe joint A is perpendicular to link.

It can be observed that keeping the prismatic pairfixed at a certain position, avoiding a collision for examjphe
P3R redundant robot can not move because any movement thasreauhovement of the virtual joint:; do not causes
movements in the jointgl and B. This singularity is a generalization of the case of the gliagty of redundant robot
shown in Fig. (3), since this singularity condition appliesany value for the angle;.

Applying the singularity condition to extended Jacobiartnirat has the following result in Eg. (30).

0 1 1 1
J— —83  —Lgsy — L3sog — Lysgzs  —L3soz — Lysazs  —Lasa3s (30)
C2 Lacy + Lzcaz + Lycazs Lscas + Lacasa Lycazg
Srzy—2 Ly Srz;—2 0 0

Note that the second column @fcan be obtained by the sum of first column multipliedZlzy with the third column.
From the second condition it has:

Qrz, ZQ2+QB+kﬂ'7 k2071727"' (31)

Considering the condition that= 0, it has the kinematic configuration resulting in Fig. (5).

This configuration determines a condition of parallelisrtwen the link3 and prismatic joinp,.. It is observed from
Fig. (5) that there is no possibility to impose trajectoiiethe direction of joinf,. if this joint is being actuated, as when
under collision avoidance. In this condition, the Jacolietrix has the following configuration in Eq. (32).

0 1 1 1
J— P, —Losy — L3saz — Lysazq  —L3So3 — Lysazqa  —L4S234 (32)
Qa Loco + Lzcaz + Lycaza L3cos + Lacazs  Lacaza
Pocoz + Qas23 Lysg 0 0

The Jacobian of the Eq. (32) presents a condition of depeedanthe fact that, the fourth line is equal to the sum of
the products of the first line b, s4, second line by and third line bysss.

These results showed that the introduction of kinematicstraints to avoid collisions, introduces two additional
singularities to the kinematics model. Thus, the methodkt#reled Jacobian from kinematic constraints also intreduc
algorithmic singularities.

These algorithmic singularities are caused by restristammovement and occur in the configuration of the kinematic
chain in which there are incompatibilities between the mosets imposed to the end-effector and the other restrition

In the example, this incompatibility occurs in situationsihich the trajectory imposed to the end-effector can not be
performed without collision.

As a practical results it should be emphasized that, in tlethod the singularity has a clear and physical significance
and can be detected and avoided.
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6. Conclusion

This paper presented a systematic method to obtaining andsdl Jacobian matrix. The methodology aimed to show
that there is a representation for the extended Jacobiamelbitby the method of kinematic constraints.

The proposal extended Jacobian is demonstrated mathaityatiod through a differential kinematic model to solv-
ing the redundancy in £3R robot by inclusion of a collision avoidance task of a joinbobto an obstacle inside its
workspace.

In the analysis of the determinant of the obtained exten@dedhlan matrix, it was shown that other singularities
occur. However it was shown that unlike the results for tlessical extended Jacobians found in the references, the
new extended Jacobian has singularities that belong éxelugo the kinematic chains. These singularities refleet t
conditions of incompatibility between the task imposedend-effector and the collision avoidance.

The main advantage of the method presented is the possilfilit complete study of the mechanism behavior, includ-
ing detection and control of conflicts between movementsed on the end-effector and secondary tasks.

Preliminary studies, applied to 2D models, have shown gesdlts in applications, where the same is waited when
applied for spatial redundant robots.
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