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Abstract. A systematic search for the Lie point symmetries admitted by the steady hydromagnetic two-dimensional 

incompressible viscous flow boundary layer equation and associated boundary conditions is performed. Unlike 

previous works, the specific forms of the external velocity and transverse magnetic fields are not postulated from the 

very beginning. In this way a whole new class of similarity reductions for the problem is derived, for applied fields 

with an exponential nature. The corresponding hydromagnetic Falkner-Skan equation is numerically solved for 

different velocity profiles at the wall, considering stretching, expansion, injection or suction.  
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1. INTRODUCTION  
 

The analysis of hydromagnetic boundary layer flows is of general physical interest, because the liquid metals in 

nature and industry are electrically conducting. In particular, magnetohydrodynamic (MHD) models are relevant in 

applications like in magnetic propulsion, power generators, accelerators, pumps, and droplet and electrostatic filters 

(Sutton and Sherman, 1965). Also the effect of electromagnetic forces in fluid flows is important in areas like nuclear 

fusion, chemical engineering, plasma physics, medicine and high-speed printing (Kumari and Nath, 1999). Recent 

works on hydromagnetic systems include the similarity analysis of non-Newtonian MHD flows (Afify, 2009), studies 

on incompressible electrically conducting fluids near the stagnation point on a stretching sheet (Ishak et al., 2009), the 

MHD stagnation-point flow of a power-law fluid towards a stretching surface (Paullet and Weidman, 2010), MHD 

viscous flow due to a shrinking sheet (Noor, Kechil and Hashim, 2010) and transient heat transfer to hydromagnetic 

channel flow with radioactive heat and convective cooling (Makinde and Chinyoka, 2010). In this context the derivation 

of exact solutions for MHD model equations is a relevant task. In particular exact solutions can be used to check the 

accuracy of numerical codes.  

 

In (non-hydromagnetic) boundary layer theory, a special role is played by the Falkner-Skan similarity solution 

(Falkner and Skan, 1931), where a power-law form is assumed for the velocity profile at infinity. Starting from the 

steady two-dimensional incompressible equations for a neutral fluid, an appropriate self-similar stream function is 

supposed so as to reduce the problem to a third-order nonlinear ordinary differential equation, with great simplification 

in comparison to the original spatio-temporal problem. In the flat plate particular case, the associated Falkner-Skan 

equation reduces to the celebrated Blasius equation (Blasius, 1908). The Falkner-Skan solution is useful not only from 

the mathematical point of view but also because it illustrates both favorable and contrary pressure gradients, as well as 

because it corresponds to wedge or stagnation point flows for certain parameter values. Moreover, the Falkner-Skan 

equation provides one of the few instances where the detailed mathematical analysis of boundary layer flows is possible 

(Padé, 2003). For instance, under specific cases like for converging channels (Magyari, 2009) or wall stretching (Fang 

and Zhang, 2008) even exact solutions to the Falkner-Skan equation are available. Also strange invariant sets 

(Swinnerton-Dyer and Sparrow, 1995) and multiple solution branches (Zaturska and Banks, 2001) have been recently 

reported.  

 

In the case of hydromagnetic boundary layer flows, similarity solutions assuming a power-law external velocity and 

magnetic fields have been worked out (Abbasbandy and Hayat, 2009), (Cobble, 1980), ), (Ishak et al., 2009), (Kumari 

and Nath, 1999). However, it is well known that the use of Lie group techniques (Bluman and Kumei, 1989) provides a 

systematic way to derive similarity reductions for partial differential equations. For this reason, the present work is 

dedicated to the search for the Lie point symmetries admitted by the steady, two-dimensional hydromagnetic boundary 

layer equations under a transverse applied magnetic field, whose functional form is not chosen from the very beginning. 

In the same way, instead of postulating a power-law dependence, the external velocity field is left free in the analysis, 

as well as the boundary conditions at the wall. In other words, both stretching as well as suction/injection through the 

(permeable) wall are possible. However, as will be seen below, the functional dependencies of the external fields and 

boundary conditions should fit specific requirements so that similarity reductions exist. For neutral boundary layers the 

systematic search for Lie point symmetries has been already made (Burde, 1996), as well as further symmetry 

reductions by means of the Clarkson-Kruskal method (Ludlow, Clarkson and Bassom, 2000). 
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This work is organized as follows. In Section II the Lie point symmetries admitted by the equation for the stream 

function and the associated boundary conditions are identified. The external magnetic and velocity fields as well as the 

velocity profile at the wall are not prescribed ab initio, but treated as functions to be determined. In this way, a new 

exponential class amenable to point symmetry methods is found. The corresponding similarity reduction is discussed in 

Section III. Section IV is dedicated to the numerical simulations of the resulting hydromagnetic Falkner-Skan equation. 

In Section V we have the conclusions. 

 

2. LIE POINT SYMMETRIES AND ADMISSIBLE EXTERNAL MAGNETIC AND VELOCITY FIELDS  
 

In terms of the stream function ),( yxψψ = , the incompressible two-dimensional steady-state hydromagnetic 

boundary layer model equations (Sutton and Sherman, 1965) reduces to  
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where )(),( xBBxUU
ee ==  and a rescaling was applied to render all quantities dimensionless. The induced 

magnetic fields as well as the electric field due to polarization are negligible, and external electric fields are not 

included. In Eq. (1), subscripts denote partial derivatives. Using a Cartesian coordinate system, the fluid velocity field is      
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applied magnetic field is .ˆ)( yxBB =
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x =−= ψψ at y=0, with functions 
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UV ,  to be specified later and interpreted as stretching and 

suction (or injection) velocities respectively. Finally, we have )(xU
e
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Instead of directly assuming power-law forms, we keep the external velocity and magnetic fields unspecified and 

search for the Lie point symmetries admitted by Eq. (1) and the boundary conditions. The method for determining 

geometric symmetries is well-known (Bluman and Kumei, 1989) and can be performed with some of the many 

available symbolic packages. Proceeding in this manner, the generator of symmetries turns out to be  
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where the ik are arbitrary numerical constants and f(x) is an arbitrary function of the indicated argument. Moreover, 

invariance of Eq. (1) imply that the two following equations for 
e

UB, should be satisfied, 
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 In addition, the boundary conditions should be also invariant under the transformation group. This requirement 

gives the further constraints 
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The 1k  and 3k parameters in the symmetry generator G are associated to the rescalings ),,(),,( ψααψ yxyx →  

and )/,,(),,( αψαψ yxyx →  respectively, where α is a constant. The parameter 2k is associated to parallel to the 

boundary layer uniform translations, =+→ 00 , xxxx constant. Finally, the 4k  parameter and the function f(x) in G 

reflect the fact that if ),( yxψ is a solution to Eq. (1), then 00 ))(,( ψψ ++ xyyx is a solution too, where 

)(0 xy represents an arbitrary position-dependent y-displacement and 0ψ is an additive constant. The transformations 

due to 4k and f(x)  are not relevant and will be dropped in the following. However, the seemingly superfluous x-
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displacements linked to 2k  will be shown to be very useful, because the external magnetic field breaks down the x-

translational invariance.  

 

Differentiation of Eq. (5) and substitution shows that Eq. (4) is identically satisfied. Hence we are left with the 

decoupled linear first-order equations (3), (5) and (6) for the admissible velocities and applied magnetic fields. 

According to the parameters, different classes of solutions can be found. To avoid triviality, the zero magnetic field as 

well as the 0321 === kkk case will be excluded.  

A detailed analysis shows that the solution of the system composed by Eqs. (3), (5) and (6) with 01 ≠k  reproduces 

the traditional hydromagnetic Falkner-Skan similarity reduction, which is fairly well described in the literature 

(Abbasbandy and Hayat, 2009), (Cobble, 1980), ), (Ishak et al., 2009), (Kumari and Nath, 1999). Hence in the 

following we study the other possibility, analyzing the consequences of setting 01 =k  everywhere. A complete 

account including the 01 ≠k  case will be reported elsewhere.  

Suppose 01 =k  in Eq. (3) which determines the external magnetic fields. To avoid trivial results set .02 ≠k  

Without loss of generality it is then convenient to set ,12 =k  which gives the exponential form  
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for the admissible magnetic fields class, where 00 ≠B is a constant. The corresponding velocities solving Eqs. (5-6) 

are  
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where 
weU ,

0 and 
wV0 are numerical constants. In particular, a positive (negative) 

wV0  is associated to injection (suction) 

through the permeable wall. As far as we know, this exponential class for which symmetry is admitted is new in the 

context of MHD boundary layers.  

 

3. SIMILARITY REDUCTIONS 

 
Working with the differential invariants of the symmetry generator in Eq. (2) it is possible to infer similarity 

solutions. For 1,0 21 == kk with the applied magnetic field as in Eq. (7) and velocities as in Eq. (8), define 
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0
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assuming .00 ≠e
U Using Eq. (9) in the stream function equation (1) the result is the third-order ordinary differential 

equation 
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with the boundary conditions 
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Eq. (10) can be defined as the hydromagnetic Falkner-Skan equation of type II, to emphasize the difference in 

comparison with the usual Falkner-Skan equation arising from a power-law velocity field. In the next Section the 

numerical analysis of the new exponential class of similarity solutions is performed. 
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4. NUMERICAL SIMULATIONS 

 

To get insight on the hydromagnetic Falkner-Skan solutions of type II, consider the asymptotic ( ∞→q ) form of 

the associated stream function in Eq. (9), which gives This corresponds to both exponentially expanding ( 03 <k ) as 

well as exponentially converging ( 03 >k ) flows, as seen in the contour plots in Figs. 1 and 2. These flows are well 

suited for e.g.  sharp expanding and convergent flows, more abrupt than the power-law cases described by the usual 

hydromagnetic Falkner-Skan solutions. However, Figs. 1 and 2 are just extrapolations, since strictly they apply only for 

∞→q . 

 

 

 
 

Figure 1. Contour plot of the asymptotic stream function in Eq. (9) for hydromagnetic Falkner-Skan solutions of 

type II and expanding flows. Here .2,1 30 −== kU e
 

 

 

 
Figure 2. Contour plot of the asymptotic stream function in Eq. (9) for hydromagnetic Falkner-Skan solutions of 

type II and converging flows. Here .2,1 30 == kU e
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More pertinent graphics can be found simulating Eq. (10) numerically and inverting the similarity transformation 

(9). Typical results are shown in Figs. 3 and 4, for = ,100 == BU e
initial conditions 0)0(,5.0)0( == qϕϕ and 

different values of k. 

 
 

Figure 3. ),( yxψ for k = - 0.1, 100 == BU
e

and initial conditions 0)0(,5.0)0( == qϕϕ . 

 

 

Figure 4. ),( yxψ for k = 2.0, 100 == BU e
and initial conditions 0)0(,5.0)0( == qϕϕ . 

 

We have considered the numerical simulation of the hydromagnetic Falkner-Skan equation of type II, Eq. (10) 

under the boundary conditions (11). To deal with two-point boundary value problems there are several approaches, 

among which: shooting method, setting )0(qqϕ  by trial and error so as to complain with 0)( =∞qqϕ up to some 

prescribed accuracy;  use of a trial function profile adapted to the boundary conditions (Kumari and Nath, 1999); 

Hankel-Padé method (Abbasbandy and Hayat, 2009); Crocco transformation (Chiam, 1999); conformal mapping 

method (Boisseau, Forgács and Giacomini, 2007). In this work the shooting method is applied since it has been proven 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

  

to be enough for our purposes. Typical results are shown in Figs. 5, 6 and 7, under variation of k),0(ϕ and )0(qϕ  

respectively.  

 
 

Figure 5. )(qqϕ for 0)0(,0.2 == qk ϕ and several values of )0(ϕ  as indicated. 

  

 

 
 

Figure 6. )(qqϕ for 0)0()0( == qϕϕ and several values of k as indicated. 
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Figure 7. )(qqϕ for 2,0)0( == kϕ and several values of )0(qϕ as apparent. 

 

 

5. CONCLUSIONS 

 
In this work the relevance of exponential-type similarity solutions for the two-dimensional steady hydromagnetic 

boundary layer equation has been highlighted. Physically the new class of solutions applies to more abrupt expanding 

or converging viscous MHD flows, in comparison to the well known power-law forms. No ad hoc assumptions have 

been adopted, nor for the external velocity and magnetic fields, nor for the boundary conditions at the wall. Hence 

injection or suction flows were also admitted. The numerical simulation for the new hydromagnetic Falkner-Skan 

solutions was performed. As apparent in all simulations, the asymptotic result 1)( →∞qϕ is attained. Further 

developments, to be shown in a separate work, comprise a series solution valid for the strong magnetic field cases.  

 

 

6. ACKNOWLEDGEMENTS 
 

One of the authors (F.H.) acknowledges the Conselho Nacional de Desenvolvimento Científico e Tecnológico 

(CNPq) for financial support.  

 

 

7. REFERENCES 
 

Abbasbandy, S. and Hayat, T., 2009, “Solution of the MHD Falkner–Skan Flow by Hankel–Padé Method”, Physics 

Letters A, Vol. 373, pp. 731-734. 

Afify, A. A., 2009, “Some New Exact Solutions for MHD Aligned Creeping Flow and Heat Transfer in Second Grade                                               

Fluids by Using Lie Group Analysis”, Nonlinear Analysis: Theory, Methods and Applications, Vol. 70, pp. 3298-

3306. 

Blasius, H., 1908, “Grenzschichten in Flüssigkeiten mit Kleiner Reibung”, Zeitschrift für Mathematik Physik, Vol. 56, 

pp. 1-37. 

Bluman, G. W. and Kumei, S., 1989, “Symmetries and Differential Equations”, Ed. Springer-Verlag, New York, U. S., 

412 pp. 

Boisseau, B., Forgács, P. and Giacomini, H., 2007. “An Analytical Approximation Scheme to Two-Point Boundary 

Value Problems of Ordinary Differential Equations”, Journal of Physics A: Mathematical and General, Vol. 40, pp. 

215-221. 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

  

Burde, G. I., 1996, “New Similarity Reductions of the Steady-State Boundary Layer Equations”, Journal of Physics A: 

Mathematical and General, Vol. 29, pp. 1655-1683.  

Chiam, T. C., 1999, “Solutions for the Flow of a Conducting Power-Law Fluid in a Transverse Magnetic Field and with 

a Pressure Gradient using Crocco Variables”, Acta Mechanica, Vol. 137, pp. 225-235.  

Cobble, M. H., 1980, “Magnetohydrodynamic Flow for a Non-Newtonian Power-Law Fluid having a Pressure Gradient 

and Fluid Injection”, Journal of Engineering Mathematics, Vol. 14, pp. 47-55. 

Falkner, V. M. and Skan, S. W., 1931, “Some Approximate Solutions of the Boundary Layer Equations”, Philosophical 

Magazine, Vol. 12, pp. 865-896. 

Fang T. and Zhang, J., 2008, “An Exact Analytical Solution of the Falkner-Skan Equation with Mass Transfer and Wall 

Stretching”, International Journal of Non-Linear Mechanics, Vol. 43, pp. 1000-1006. 

Ishak, A., Jafar, K., Nazar, R. and Pop, I., 2009, “MHD Stagnation Point Flow Towards a Stretching Sheet”, Physica A, 

Vol. 388, pp. 3377-3383. 

Kumari, M. and Nath, G., 1999, “Development of Flow and Heat Transfer of a Viscous Fluid in the Stagnation-Point 

Region of a Three-Dimensional Body with a Magnetic Field”, Acta Mechanica, Vol. 135, pp. 1-12. 

Ludlow, D. K.,  Clarkson, P. A. and Bassom, A. P., 2000, “New Similarity Solutions of the Unsteady Incompressible 

Boundary-Layer Equations”, The Quarterly Journal of Mechanics & Applied Mathematics , Vol. 53, pp. 175-206. 

Magyari, E., 2009, “Falkner-Skan Flows Past Moving Boundaries: an Exactly Solvable Case”, Acta Mechanica Vol. 

203, pp. 13–21. 

Makinde, O. D. and Chinyoka, T., 2010, “Numerical Investigation of Transient Heat Transfer to Hydromagnetic 

Channel Flow with Radiative Heat and Convective Cooling”, Communications in Nonlinear Science and Numerical 

Simulation, Vol. 15, pp. 3919–3930.  

Noor, N. F. M., Kechil, S. A. and Hashim, I., 2010, “Simple Non-Perturbative Solution for MHD Viscous Flow due to a 

Shrinking Sheet”,  Communications in Nonlinear Science and Numerical Simulations, Vol. 15, pp. 144–148. 

Padé, O., 2003, “On the Solution of the Falkner-Skan Equation”, Journal of Mathematical Analysis and Applications, 

Vol. 285, pp. 264-274. 

Paullet, J. and Weidman, P., 2010, “Comment on “Magnetohydrodynamic Stagnation-Point Flow of a Power-Law Fluid 

Towards a Stretching Sheet” International Journal of Non-linear Mechanics, Vol. 45, pp. 598–599.  

Sutton, G. W. and Sherman, A., 1965, “Engineering Magnetohydrodynamics”, Ed. McGraw–Hill, New York, U.S.,    

576 pp.  

Swinnerton-Dyer, H. P. F. and Sparrow, C. T., 1995. “The Falkner-Skan Equation. I: the Creation of Strange Invariant 

Sets”, Journal of Differential Equations, Vol. 119, pp. 336-394. 

Zaturska, M. B. and Banks, W. H. H., 2001, “A New Solution-Branch of the Falkner-Skan Equation”, Acta Mechanica, 

Vol. 152, pp. 197-201.  

 

 

8. RESPONSIBILITY NOTICE 
 

    The authors are the only responsible for the printed material included in this paper. 

 


