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Summary. Based on the static theorem of plastic shakedown presented by Polizzoto, static and kinematic variational 

principles can be established. Such principles are actually, optimization problems whose solutions can be obtained 

adapting Newton’s method to find the optimal points of nonlinear problems formed by equality and inequalities 

constraints also nonlinear.  Therefore, this article aims to present an algorithm based on Newton’s iteration to 

determine the largest amplification of a domain of elastic stress fields in such a way that the body or structure will not 

undergo a process of  alternating plasticity that would lead to its collapse by a low cycle fatigue. 
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1.  INTRODUCTION 
 

The static theorem of plastic shakedown, presented by (Polizzotto, 1993), establishes that a body or structure will 

not undergo a process of alternating plasticity, for the load variations contained in a domain, if and only if a stress 

distribution T independent of time exists, such that its sum with any stress T
e
 (which belongs to the domain variations of 

the corresponding elastic stress) will be plastically admissible. 

For porous materials the plastic deformation depends not only on the deviatoric stress but also on the hydrostatic 

pressure. Doraivelu (1984) proposed a yield function for porous materials which is used in this work, together with the 

Polizzoto’s theorem of plastic shakedown (1993), to develop a Newton based algorithm for the numerical solution for 

the plastic shakedown problem. 

 

 

2.  A YIELD FUNCTION FOR POROUS MATERIALS  
 

Based on (Doraivelu, 1984) it is possible to demonstrate that a yield function for porous materials can be expressed 

by: 
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where: 

J2 is the second invariant of the stress deviator tensor; 

I1 is the first invariant of the stress tensor; 

Yo is the yield stress of the base material; 

R is the relative density of the porous material; 

σ is the stress on the point of study. 
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and where n is an exponential that according to Alves (2006) is given by: 
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In the previous expression, Ri represents the initial relative density of the porous material. Besides that,  
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and Y represents the yield stress of the porous material. Still according to Alves (2006), the parameter δ can be 

estimated by the following expression:  
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Based on Heckel (1961), it is possible to express the relative density R as a function of the hydrostatic stress pH : 
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where: 
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3.  A MIXED VARIATIONAL PRINCIPLE FOR THE PLASTIC SHAKEDOWN OF A POROUS MATERIAL  
  

Assuming that a domain ∆F exists, where the loads applied to a body or a structure can vary or execute cycles freely 

and supposing that an amount k of independent mechanical loads acts in the body, then it can be conceived that the load 

domain ∆F is formed by a convex polyhedron of m vertices, where m = 2
k
.  

The stress fields Te resulting from the above mentioned loads are obtained with the assumption that the material 

response is purely elastic to any applied external load and are called unlimitedly elastic stress. 

Thus it is possible to present the following mixed variational principle for the plastic shakedown of a porous 

material (Schatz, 2008): 
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where B represents a domain at R3 occupied by the body in question, Dα is the rate of plastic deformation, )( αχ D  

represents a dissipation function and ω the domain amplification factor. 

Note that the lagrangian of the previous optimization problem is given by: 
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A local form for the problem of alternating plasticity is exactly the same as the one defined by the variational 

principle established on Eq. (11) and is given by (Silveira, 1996): 
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The optimal conditions for the previous local problem are: 
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Where all the variables ω*, λ
α
, T

eα
 e T are functions of the position x occupied by the point of the body subject 

to the loads. 

 

 

4.  NEWTON’S METHOD 
 

The formula of Newton’s algorithm for the optimization of a function L(u), is given by: 

 

)()( uhduuh −=∇     (20) 

where: 

)()( uLuh ∇=  

and  )(uh∇ is the Hessian of the function L(u). 

Initially it is considered only the equality constraints, Eqs. (15), (16) and (17). Thus, it can be written 

 

( )

( )[ ]{ } 01*

*

)( =





















−+∇⋅∇⋅

+∇⋅∇

= ∑
∑

λ

ωλλ

ωλλ

α

ααααα
α

αααα

F

TTffTT

TTffT

uh
eee

ee

      (21) 

where: 
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It is established that: 
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Therefore, according to Eq. (21), the functional h(u) is formed by three functions: 
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and for the use of Eq. (20) it is necessary also to know the Hessian )(uh∇ given by: 
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Deriving the lines of the functional h(u) in relation to the variables T, ω and λ, it is found  )(uh∇ as shown in Eq. 

(29). Substituting the expressions of h(u)duuh  and , )(∇ in Eq. (20), it is found: 
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where: 
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and in the previous expression ( )TTf
e +∇ αω *

2  represents the Hessian of the yield function. 
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and in the previous expression, ( )TTf
e +∇ αω *  represents the gradient of the yield function. 
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where 
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Eq. (30) originates the following linear equation system  
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The previous system can be solved by substitution. For instance, from the first equation of the system it can be 

attained: 
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From the second equation of the system it is obtained: 
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Substituting Eq. (39) and Eq. (40) in the last line of Eq. (38), it is found the following linear equation system:  
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where: 
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Solving the linear equation system presented by Eq. (43), it is found λ
o
. From Eq. (40), it is found dω and 

finally from Eq. (39), dT. 

 

 

5.  STRESS CONTRACTION AND INCREMENT REDUCTION 
 

In this stage, it is verified if the increments obtained comply with inequality constraints. If they don’t, then a 
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contraction (factor p) of the obtained stress, combined with eventual reductions (factor s) of the increments will take 

place. To do this, for each vertex α, the values of pα are calculated, in such a way that the equality below is satisfied: 
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where: 

γ is a real number, taken initially as being equal to a γ
o
 , where γ

o
 is arbitrarily chosen in the interval [0, 1].  

s is a factor initially taken as being equal to one. 

 

After the first step, the factor γ  can be determined in the following way: 
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After the values of p
α
 are obtained, the smaller one is assumed. Thus, 
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Next, ϖ is calculated by the formula: 
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If ϖ < ω, then: 
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where so is an arbitrary parameter chosen in the interval [0, 1]. 

 

Having the values of s and γ , Eq. (46) is once more used to  calculate new values of p
α
.  Next, Eq. (48) is used 

to determine the smaller of its values. ϖ is calculated through Eq. (49) and the procedure is repeated until ϖ ≥ ω. 

ω is updated through the expression: 
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The updating of the stress is done through the following recursive formula: 
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In the updating of λ it is imposed that all the λ
α
 be strictly positive, therefore λ

α
 are taken by the rule: 
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6.  ALGORITHM FOR THE LOCAL PROBLEM OF ALTERNATE PLASTICITY  
 

1. Initialization and Data Input  
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2. Increment Estimation 

For all α do:     
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7.  EXAMPLES 

 

7.1 Analysis of a tube of dense material subjected to variable pressure and temperature 

As a first example, a tube made of a dense metal and subjected to variable pressure and temperature is studied. Let: 
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In the former expression, R represents the radial distance from a point to the axis of the tube.  
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3. Admissibility Verification  
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







=

ω

ω
γγ

do
,min

,  

Repeat until ωϖ ≥  

For all α find  p
α such as: 

       

)(                                                

)]}([{

T
e

Tf

dT
e

TdsT
e

Tpf

+

=+++

αωγ

αωαωα
 

       End 

    [ ] αα ∀=   min fpp  

p=ω  

bpHT
1−−=  

For all α do: 

    TT
e += αα ωσ *  

    
)(

1
α

α

σ
λ

f
−=  

               End 

 

]min[ α
pp =  

   )( ωωϖ sdp +⋅=  

   osss ⋅=  

End 

4. Updating 
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5. Convergence Check  
 

If 

 

    epsG >λ  

 

    epsJ >−⋅ 1λ  

 

    epsF >
∞

λ  

 

 Then 

 

    Return to step 2 

 

Else 

 

   End 
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Given that: 

 

 E is the Young modulus; 

 α is the thermal expansion coefficient; 

 ν is the Poisson ratio; 

Θ  is the temperature. 

 

and defining: 

 

Θ
−−

⋅⋅
=

)1)(1(2 2

2

ν

α

k

Ek
q    (58) 

 

kk

k

ln2

1
2

2

⋅

−
=δ    (59) 

 

Then, elastic stresses, according to Gokhfeld and Cherniavsky (1980), can be found through: 
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Varying simultaneously the pressure from 0 to
ip  and the temperature from Θ   to0 , the graph shown in Figure 1 

can be found. 

 

 

Figure 1: Bree’s diagram for the alternating plasticity of the tube. 

 

 

7.2  Analysis of a bar of porous material subjected to a variable axial compressive load  
 

A bar with a square cross section with side b equal to 10 mm was used in this example simulation. The yield stress 

of the base material is 156 MPa and the upper value of the axial load N is 5kN. The initial relative density Ri is 0.707. 

and the yield function used was proposed by Doiravelu (1984).  
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Four different domains were simulated in the bar analysis as shown in Table 1. 

Table 1 - Domain variation for the axial load. 

Domain 
Lower 

Axial Load 
Upper 

Axial Load 

I 0.500 N N 

II 0.625 N N 

III 0.750 N N 

IV 0.875 N N 

 

The results of the simulations for each domain are presented on the following table: 

Table 2: Results of the simulation for the porous Material bar. 

Domain 
Lower 

Axial Load 

Upper 

Axial Load 

Amplification 

Factor  

Relative 

Density  

I 0.500 N N ω = 6.23 R = 0.75 

II 0.625 N N ω = 8.65 R = 0.77 

III 0.750 N N ω = 14.13 R = 0.81 

IV 0.875 N N ω = 36.69 R = 0.92 

 

7.  CONCLUSIONS 
 

Departing from the static theorem of plastic shakedown presented by Polizzoto, it was developed an algorithm based 

on Newton’s method to find the largest amplification of a load domain applied to a porous material in such a way that it 

will not suffer a process of alternating plasticity that leads to a collapse by low cycle fatigue.  

In a test with a tube made of a dense material and subjected to variable pressure and temperature, the solution found 

based on proposed algorithm had a perfect coincidence with the exact one presented by Gokhfeld and Cherniavsky. 
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