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Summary. Based on the static theorem of plastic shakedown presented by Polizzoto, static and kinematic variational
principles can be established. Such principles are actually, optimization problems whose solutions can be obtained
adapting Newton’s method to find the optimal points of nonlinear problems formed by equality and inequalities
constraints also nonlinear. Therefore, this article aims to present an algorithm based on Newton’s iteration to
determine the largest amplification of a domain of elastic stress fields in such a way that the body or structure will not
undergo a process of alternating plasticity that would lead to its collapse by a low cycle fatigue.
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1. INTRODUCTION

The static theorem of plastic shakedown, presented by (Polizzotto, 1993), establishes that a body or structure will
not undergo a process of alternating plasticity, for the load variations contained in a domain, if and only if a stress
distribution 7 independent of time exists, such that its sum with any stress 7° (which belongs to the domain variations of
the corresponding elastic stress) will be plastically admissible.

For porous materials the plastic deformation depends not only on the deviatoric stress but also on the hydrostatic
pressure. Doraivelu (1984) proposed a yield function for porous materials which is used in this work, together with the
Polizzoto’s theorem of plastic shakedown (1993), to develop a Newton based algorithm for the numerical solution for
the plastic shakedown problem.

2. A YIELD FUNCTION FOR POROUS MATERIALS

Based on (Doraivelu, 1984) it is possible to demonstrate that a yield function for porous materials can be expressed
by:

f(0)=A(0)J,(6)+B(0)I] (0)-8(0)Y, <0 )

where:
J, is the second invariant of the stress deviator tensor;
I, is the first invariant of the stress tensor;
Y, is the yield stress of the base material;
R is the relative density of the porous material;
o is the stress on the point of study.

A=24R" 2)
1-R"

B= 3

3 3)

and where 7 is an exponential that according to Alves (2006) is given by:

n=4.15R, =123 4)
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In the previous expression, R; represents the initial relative density of the porous material. Besides that,

O(R)=— )

and Y represents the yield stress of the porous material. Still according to Alves (2006), the parameter J can be
estimated by the following expression:

0.343R**™ R

O(R)= 6
*®) 0.343R**¥ +(1-R) ©
Based on Heckel (1961), it is possible to express the relative density R as a function of the hydrostatic stress pH :
R =1-Exp[-(k- pH +¢)] @)
where:
1
k=— 8
7 )
1
c=In| 9
[1—R,. J )
1
PH:§(011+O-22+O-33) (10)

3. A MIXED VARIATIONAL PRINCIPLE FOR THE PLASTIC SHAKEDOWN OF A POROUS MATERIAL

Assuming that a domain AF exists, where the loads applied to a body or a structure can vary or execute cycles freely
and supposing that an amount k of independent mechanical loads acts in the body, then it can be conceived that the load
domain AF is formed by a convex polyhedron of m vertices, where m = 2k,

The stress fields T° resulting from the above mentioned loads are obtained with the assumption that the material
response is purely elastic to any applied external load and are called unlimitedly elastic stress.

Thus it is possible to present the following mixed variational principle for the plastic shakedown of a porous
material (Schatz, 2008):

w= supin;{w*+2[;((0“)—j(w*T“’ +T) D” dB]} a=1.m (11

w* T D

where B represents a domain at R® occupied by the body in question, D” is the rate of plastic deformation, ¥(D%)

represents a dissipation function and o the domain amplification factor.
Note that the lagrangian of the previous optimization problem is given by:

L(a)*,T,D"):a)*+z
o

2(D%) - J'(a;*T“’ +T) D" a’B} (12)

B

A local form for the problem of alternating plasticity is exactly the same as the one defined by the variational
principle established on Eq. (11) and is given by (Silveira, 1996):

@ = inf w(x) (13)

where
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a(x) =sup @* (x) | o* ()T (x)+T(x)e P a=1,..m (14)
@*(x),T(x)

The optimal conditions for the previous local problem are:

> avflws T +7)=0 (15)
z[ @ 12w T +T)|-1=0 (16)
florre+T)* =0 an
flo*re* +1)<0 (18)
1%>0 (19)

Where all the variables w*, 1% T°* e T are functions of the position x occupied by the point of the body subject
to the loads.

4. NEWTON’S METHOD

The formula of Newton’s algorithm for the optimization of a function L(u), is given by:

Vh(u)du = —h(u) (20)
where:
h(u) =VL(u)

and Vh(u) is the Hessian of the function L(u).

Initially it is considered only the equality constraints, Egs. (15), (16) and (17). Thus, it can be written

AT 20f (T +T)

oy =| S free v aevilosre s )l-1]=0 @1

) FA

where:
u=[T oAl (22)
T=[T,, Ty, Ty T, Ty T31]T (23)
A=A A.AM (24)
flo*Te +1) 0 0

e2

e 0 flo*r+1) .. 0 05)
0 0 o florT+7)

It is established that:
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(26)

27

Therefore, according to Eq. (21), the functional h(u) is formed by three functions:

hy ()

h(u)=|h,(w)|=0

By (u)

(28)

and for the use of Eq. (20) it is necessary also to know the Hessian Vh(u) given by:

o
oT"

n,

o,
Lor”

an

ow
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w
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w

an]
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on,
oA

Ihy
oA |

(29)

Deriving the lines of the functional i(u) in relation to the variables 7, @ and 4, it is found VA(u) as shown in Eq.
(29). Substituting the expressions of Vh(u ),du and h(u) in Eq. (20), it is found:

H b

b n

AGT AJ
where:

G| dr’
J| dw
F ﬂ(} _ ﬂ

H=Y 2V flw T +T)

e vl ree + 7)1

(24

Zl"Vf(a)*T“’ +T)

FA

(30)

(3D

and in the previous expression V7 f (a)* T + T) represents the Hessian of the yield function.

b= ZA“VQf(a)*T“” +T)e

Vf,

G =|Vf,

Vfs

Vf;?
Vfy

Vfs

A/

vfy

Vs

(32)

(33)

and in the previous expression, Vf(a)*T“’ +T) represents the gradient of the yield function.
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where

i =Vf o +1) T

A0 .. 0

2
A:0 A0
0 0 .. A"

Eq. (30) originates the following linear equation system

HAT +bdw+GA =0
b-dT +ndw+J -2 =1
AGTdT + AJdw+ FA° =0
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(34)

(35)

(36)

(37)

(38)

The previous system can be solved by substitution. For instance, from the first equation of the system it can be

attained:

dT =—H ' (bdw+ G1°)

From the second equation of the system it is obtained:

1
do=—1-2"2)
B

where:
B=n—-H'b-b

z'=J"-b"H"'G,

(39)

(40)

(41)

(42)

Substituting Eq. (39) and Eq. (40) in the last line of Eq. (38), it is found the following linear equation system:

KX =7
where:
K=ZZ" +BW

W=G"H'G-A"'F

(43)

(44)

(45)

Solving the linear equation system presented by Eq. (43), it is found 4°. From Eq. (40), it is found dw and

finally from Eq. (39), dT.

5. STRESS CONTRACTION AND INCREMENT REDUCTION

In this stage, it is verified if the increments obtained comply with inequality constraints. If they don’t, then a
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contraction (factor p) of the obtained stress, combined with eventual reductions (factor s) of the increments will take
place. To do this, for each vertex a, the values of p” are calculated, in such a way that the equality below is satisfied:

fIp®lal® +T +s(dawT** +dT)} =y f(@T“* +T) (46)

where:
yis a real number, taken initially as being equal to a y° , where y° is arbitrarily chosen in the interval [0, 1].
s is a factor initially taken as being equal to one.

After the first step, the factor 7 can be determined in the following way:

Y= min[}/"' ,@} 47
@

After the values of p” are obtained, the smaller one is assumed. Thus,

p=min[p“] (48)

Next, @ is calculated by the formula:

D =p-(0+sdw) (49)

If w < w, then:

s=5-5 (50)

where s, is an arbitrary parameter chosen in the interval [0, 1].

Having the values of s and ¥, Eq. (46) is once more used to calculate new values of p”. Next, Eq. (48) is used
to determine the smaller of its values. @ is calculated through Eq. (49) and the procedure is repeated until @ > w.
o is updated through the expression:

O—0=p (W+sdw) (51)

The updating of the stress is done through the following recursive formula:

T=p-(T"+s-dT) (52)

In the updating of 1 it is imposed that all the A“ be strictly positive, therefore A* are taken by the rule:

lﬂ

A% =max[A’, ¥, - R (53)

where

L i}
N T o
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6. ALGORITHM FOR THE LOCAL PROBLEM OF ALTERNATE PLASTICITY

1. Initialization and Data Input
¥’ =0.0001 y; =0.0001 s, =0.999
TL'(I
For all a do:
o _ 1
10

H® ="V f(0)

ba — /’tﬂ!va'(O)TPa
End

Al
b:;b”‘

For all o find p” such as:

fIlp*(@*“ =H™'b)=y"f(0)

End

p=min[p“]

w=p

T=—pH™'b

For all a do:
o =w*T" +T
a 1

fe®)
End

2. Increment Estimation

For all a do:
H®* =°V*f(c®)
b = A7V f(0°)T*
j* =Vf(@) T
End

-1
H' :{ZH“}
b:Zb“

nzzba .Tea
B=n-H"'b-b
G=[Vf(c")]

A =diag[A”]

F =diag[f(c“)]
W=G"H'G-A"'F
Z=J-G"H™"
K=2Z" + BW

Solve the system.:
K\ =Z

1
do=—(1-Z"1")
B

dT =—H ' (bdw+GX’)
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3. Admiissibility Verification 4. Updating
s=1.0
w=0
) { ) da)}
y=min| y”,—
w T=p-(T+s-dT)

Repeat until @ 2 @

]
For all o find p* such as: 7 = minly;. ||T|| ]
FIpH1aT®® +T + s(daT% +dT)]} = For all o do:
¥ f(@r% +1)
o mat.y, [
o End
p= min[p‘;.’] Va
@=p 5. Convergence Check
_ -1
T = —pH b lf
Forall a do:
"G/l" > eps
" =w*T* +T
| J - A—=1>eps
[
O_(Z
J@) |FA] > eps
End
Then
p=min[p“] Return to step 2
O =p (w+sdw) Else
§=5-5, End
End
7. EXAMPLES

7.1 Analysis of a tube of dense material subjected to variable pressure and temperature

As a first example, a tube made of a dense metal and subjected to variable pressure and temperature is studied. Let:

R,

k=—- 55
R (55)
R

r=— 56
R (56)

_E_ 57
1k 7 (57
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Given that:

E is the Young modulus;

o is the thermal expansion coefficient;
v is the Poisson ratio;

® is the temperature.

and defining:

k> E-o
= — - 58
1 20-k*)(1-v) (58)
1-k*
= 59
2k* - Ink %)

Then, elastic stresses, according to Gokhfeld and Cherniavsky (1980), can be found through:

o' =p-(=r)+-q-(1—-r> +25-In7) (60)
oi=p-(+r)+—q-[1+r>+25-(1+1nr)] (61)
o¢ = p+-2¢-[1+5-(1+2Inr)] (62)

Varying simultaneously the pressure from O to p, and the temperature from 0 to ®, the graph shown in Figure 1
can be found.

wg
¥
331
250 Instantaneous collapse
by Tresca
243

Gocteld 's Exact /

207 Solution

0.00 0.0% 013 0.28 0.37 0.46 0.55 0.65 074

Figure 1: Bree’s diagram for the alternating plasticity of the tube.

7.2 Analysis of a bar of porous material subjected to a variable axial compressive load

A bar with a square cross section with side b equal to 10 mm was used in this example simulation. The yield stress
of the base material is 156 MPa and the upper value of the axial load N is SkN. The initial relative density R; is 0.707.
and the yield function used was proposed by Doiravelu (1984).
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Four different domains were simulated in the bar analysis as shown in Table 1.

Table 1 - Domain variation for the axial load.

. Lower Upper
Domain Axial Load Axial Load
I 0.500 N N
i 0.625 N N
i 0.750 N N
v 0.875 N N

The results of the simulations for each domain are presented on the following table:

Table 2: Results of the simulation for the porous Material bar.

Domain Lower Upper Amplification Relative
Axial Load Axial Load Factor Density

I 0.500 N N o =06.23 R=0.75

II 0.625 N N o =8.65 R=0.77

11 0.750 N N o =14.13 R=0.81
v 0.875N N o =36.69 R=092

7. CONCLUSIONS

Departing from the static theorem of plastic shakedown presented by Polizzoto, it was developed an algorithm based
on Newton’s method to find the largest amplification of a load domain applied to a porous material in such a way that it
will not suffer a process of alternating plasticity that leads to a collapse by low cycle fatigue.

In a test with a tube made of a dense material and subjected to variable pressure and temperature, the solution found
based on proposed algorithm had a perfect coincidence with the exact one presented by Gokhfeld and Cherniavsky.
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