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Abstract. This paper discusses the influence of the buckets overlap ratio of a Savonius wind rotor on the averaged 

moment and power coefficient, over complete cycles of operation. The equations of continuity, Reynolds Averaged 

Navier-Stokes – RANS and the Eddy Viscosity Model k-ω SST, in its Low-Reynolds approaches, with hybrid near wall 

treatment; are numerically solved using the commercial software Star-CCM
+
, based on Finite Volume Method, 

resulting in the fields of pressure and velocity of the flow and the forces acting on the rotor buckets. The moment and 

power coefficients are achieved through integration of forces coming from the effects of pressure and viscosity of the 

wind on the device. The influence of the buckets overlap ratio on the moment and power coefficients is checked by 

changing the geometry of the rotor, keeping the Reynolds number, based on rotor diameter, equal to 433,500. The 

results obtained for the rotor with zero overlap are in agreement with those obtained experimentally by other authors 

indicating that the method can be successfully used for such analysis. The values of the moment and power coefficients 

obtained as a function of tip speed ratio and the buckets overlap of the rotor indicates that the maximum device 

performance occurs for buckets overlap ratios with values close to 0.15. 

 

Keywords: Savonius wind rotor; buckets overlap ratio; CFD. 

 

1. INTRODUCTION 

 

The use of unconventional devices like the Savonius wind rotor can be a solution for low cost and reduced 

environmental impacts for decentralized power generation. The wind rotor developed and patented in 1929 by Sigurd J. 

Savonius from Helsingfors at Finland, has, among other advantages: simple construction; high torque at startup and in 

full operation; accepting wind from any direction for the operation; low noise and low angular velocity in operation, 

which reduces wear on moving parts; in addition to various rotor configuration options, as for example, the use of 

multiple stages and different shapes of buckets (Savonius, 1930; Vance, 1973; Modi and Fernando, 1989). A Savonius 

wind rotor, however, cannot be regarded as a wind machine with performance higher and nor lower than performance 

of the other wind machines from power generation. Savonius rotors should only be understood as different mechanisms 

for the utilization of wind energy, and technological alternatives to conventional wind turbines (Vance, 1973; Eldridge, 

1980). The device created by Savonius works mainly due to the resulting drag force on their buckets (Savonius, 1930). 

According to Akwa (2010), lift forces are also responsible for part of the power provided by the device. 

As it was reported by Akwa (2010), the performance of a Savonius rotor is affected by flow parameters and 

geometry of the rotor. For a given flow configuration, different arrangements of Savonius rotor provide different 

performances in converting wind energy into useful energy. Studies about the influence of the buckets overlap ratio on 

the rotor performance are among the main research work carried out on such a device wind. In most previous studies on 

the influence of the buckets overlap ratio on the performance of Savonius rotor, it was reached the conclusion that a 

small overlap between the rotor buckets provides an improvement in the efficiency of the device. However, there is not 

yet an accurate indication of the optimum size of overlap in use; it reinforces the need for further investigation. 

According to Fujisawa (1992), the optimum size for the buckets overlap equals 15% of the size of the bucket chord. 

Blackwell et al. (1977) conclude that this dimension is equivalent to a value between 10 and 15% that size. Alexander 

and Holownia (1978) and Mojola (1985) indicate that values between 20 and 30% of the length chord provide the best 

results for the performance of Savonius wind turbines. 

This paper discusses the influence of the buckets overlap ratio of a Savonius wind rotor on moment and power 

coefficients averaged over complete cycles of device operation. The results were obtained by applying the Finite 

Volume Method to solve the conservation equations of the turbulent air flow on the rotor, which allows the calculation 

of the performance coefficients of the rotor. 

 

2. METHODOLOGY 

 

2.1. Description of phenomenon 

 

In this research work, the performance of a two bucket Savonius rotor with semicircular profiles buckets, like the 

one shown in Fig. 1, was analyzed. A two-dimensional modeling for the geometry of the rotor (Fig. 1-b) in operation is 
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performed, whereas in such a device, with high aspect ratio as can be seen in Figure 1-a, the changes in the profile of 

the flow caused by the effects of the bucket tips can be considered small. The operation of the rotor is simulated with 

variation in buckets overlap ratio (Rs). The buckets overlap ratio is obtained by the relationship between the overlap, s, 

and the chord, c, of the rotor buckets: s/c. In Figure 1-c, two-dimensional representations of the rotors tested with 

different buckets overlap ratios are displayed. 

In Figure 1-b, the diameter of the end plate, dpe, has a value of 1.1 m, while the value of the rotor diameter, dr, is 1 

m. The thickness of the buckets, e, is 4 mm and the spacing between the rotor buckets, a, is null. θ indicates the buckets 

angular position of the rotor that have a constant angular velocity, ω, in wind with undisturbed velocity at a value equal 

to Vo. The parameters of the rotor and flow are always adjusted to each analysis keeping the Reynolds number, based on 

rotor diameter and undisturbed flow velocity, equal to 433,500. 

 

 

 
(a) (b) 

 
(c) 

 

Figure 1. Savonius rotor: (a) 3D representation; (b) 2D representation; (c) geometry changes 

 

The rotor is considered to be immersed in a turbulent air flow and operating at certain constant rotation rate. This 

phenomenon is reproduced by simulating the rotor operation in a domain that containing air under atmospheric 

conditions. The conservation equations of the turbulent air flow on the rotor are numerically solved for obtain the 

velocity and pressure fields in the calculation domain and the forces acting on the rotor buckets. The moment and power 

coefficients are achieved through integration of forces coming from the effects of pressure and viscosity of the wind on 

the device. The calculation domain is spatially discretized by cells of quad format to solve the equations using the Finite 

Volume Method (Patankar, 1980). 

The dimensions of the calculation domain, given in multiples of the rotor diameter, and the boundary conditions 

adopted for the solution of conservation equations are shown in Fig. 2. The size of the calculation domain was chosen 

so that the boundaries just stay away from the rotor and thereby not affecting the performance of wind energy device, as 

is commented by Akwa (2010) and Silva Júnior (2010). Inside calculation domain, a circular region with mesh slide is 

bounded containing the contours of the rotor. This circular region has a diameter equivalent to 1.10 rotor diameters and 

center at 6 rotor diameters of the inlet and the sides of the calculation domain. At the inlet of the calculation domain, a 

velocity value for the air flow is prescribed, while at the outlet of the domain the pressure is considered equivalent to 

atmospheric pressure. The sides of the calculation domain are considered as symmetry planes. On the surface of the 

rotor, is considered the no-slip condition. As boundary conditions for calculating the effects of turbulence are used 

characteristic length and intensity of turbulence. As initial condition, it is considered homogeneous fields of pressure 
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and velocity in the flow. The rotation of the wind device is set to each simulation by specifying the rotation rate of the 

region of sliding mesh. 

 

 
 

Figure 2. Calculation domain and boundary conditions 

 

2.2. Details of the domain discretization 

 

The equations of continuity, Reynolds Averaged Navier-Stokes – RANS and the Eddy Viscosity Model k-ω SST, in 

its Low-Reynolds approaches, with hybrid near wall treatment; are numerically solved using the commercial software 

Star-CCM+, based on Finite Volume Method, resulting in the fields of pressure and velocity of the flow and the forces 

acting on the rotor buckets. Applying this method, the calculation domain under study is divided into a finite number of 

elementary control volumes. The finite volume discretization transforms the differential equations governing the flow in 

a linear system of algebraic equations that is solved iteratively. This is due to the substitution of infinitesimal 

differences by finite differences in the differential equations. The calculated values of the variables are assigned to the 

centroids of each of the volumes. Thus the solution is discrete, depending on the number of elementary volumes present 

in the calculation domain (Maliska, 1995). 

For purposes of domain discretization, a mesh with quadrilaterals volumes was done. The mesh consists by two 

parts: the first is fixed and the other is sliding (Fig. 3-a). The sliding mesh is located in the region circumscribed by the 

interface (Fig. 3-b). The sliding domain is constructed with a non-structured mesh, which ensures a better adaptation to 

the curved geometry of the rotor; while the fixed domain consists of a mapped mesh, ensuring a better organization and 

reducing the effects of numerical diffusion (Maliska, 1995; Akwa, 2010). Near the buckets are used layers of the finest 

volumes in order to improve the assessment of the boundary layer (Fig. 3-c). 

 

2.3. Mathematical relationships and details of the used method 

 

In this research work, the results were obtained by applying the Finite Volume Method to solve the conservation 

equations of the turbulent air flow on the rotor, which allows the calculation of the performance coefficients of the 

rotor. Among these conservation equations, there is a mass balance equation. The Equation (1) with indicial notation 

represents the mass balance where iu  is the average velocity of air flow and iu′  is the velocity fluctuation due to the 

effects of turbulence, and x represents the direction of flow. The momentum equation must be solved along with the 

mass balance equation. The Equation (2) represents the momentum equation, where t is the time, p  is average 

pressure, ρ is the density and µ is the dynamic viscosity of atmospheric air. 
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From the Equation (2), arises the term jiuu ′′ρ
 
that is the stresses tensor of Reynolds introducing six additional 

unknowns. To solve the closure problem caused by the emergence of new unknowns, the turbulence model k-ω SST, in 

its Low-Reynolds approaches, is used because it's the one that best fits the studied phenomenon (Wilcox, 1998; Menter 

e Kuntz, 2002; Star-CCM+, 2008; Akwa, 2010). The model solves the equations of turbulent kinetic energy k, calculated 

by Eq. (3), and specific dissipation rate ωt, calculated by Eq. (4). 

 

 
(a) 

 

 
(b) 

 
(c) 

 

Figure 3. Used mesh: (a) overview of the discretizated domain; (b) region near 

the interface; (c) prismatic layer used 
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In the equations of turbulence model, V is the cell volume, A is area, a is a face area vector, v is velocity of the flow, 

vg is the velocity of the grid, kσ  and 
tωσ  are inverse turbulent Schmidt numbers, tµ  represents turbulent viscosity, Sk 

and 
t

Sω are the user-specified source terms, k0 and ωt0 are the ambient turbulence values in source terms that counteract 
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turbulence decay, and effγ  is the effective intermittency provided by the Gamma ReTheta Transition model that is 

unity if this model is not activated. γ ′  is calculated by Eq. (5). 
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t
Gω  is the production of ωt is evaluated by the Eq. (6), where γ  is a blended coefficient of the model and S is the 

modulus of the mean strain rate tensor (S = |S|). Similarly, the production of k, Gk, is defined by Eq. (7). S is evaluated 

by Eq. (8). 
tkT ω is a time scale that is computed using the Eq. (9). 
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The term 
t

Dω in the Equation (4) is a cross-derivative term, defined by the Eq. (10). 
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The coefficients in the model are calculated from the blending function F1, such that each coefficient φ  is given by 

Eq. (11). The coefficients of Set 1 ( 1φ ) are given by Eq. (12) and the coefficients of Set 2 ( 2φ ) are given by Eq. (13). 

And in both Set 1 and Set 2 *β is 0.09 and *α  is 1. 
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The blending function F1 is defined by Eq. (14), with arg1 defined by the Eq. (15), where y is the distance to the 

nearest wall, 
tkCD ω is related to the cross-diffusion term and ν  is the kinematic viscosity 

tkCD ω  is defined by Eq. 

(16). 
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The Equation (17) expresses the function F2, where the coefficient a1 is equal to 0.31 and arg2 is given by the Eq. 

(18). 
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The relations to find the turbulent viscosity are obtained through the solution of Eq. (3) and (4). Thus, the turbulent 

viscosity µt  can be expressed by Eq. (19) and related to the Reynolds tensor by Eq. (20), solving the closure problem. In 

the Equation (20), ijδ  is the Kronecker delta operator. 
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A hybrid treatment solution on the wall was done in this research work. Using this treatment, the laminar sub layer 

in the region of fine mesh, for dimensionless wall distance, y+, less than three, is calculated and in other areas it use a 

logarithmic profile for the boundary layer. y+ is evaluated by the Eq. (21), where u* is a reference velocity. For the 

hybrid wall treatment, or all y
+ wall treatment, that is used in this work, a hybrid function g is defined in terms of 

Reynolds number based on distance from the wall, Rey, according to Eq. (22). 
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The reference velocity u*, production in the wall cell Gk and specific dissipation in the wall cell ωt, are given by Eq. 

(23), (24) and (25), respectively, where u+ is wall-parallel velocity (u) non-dimensionalized with u*. 
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The boundary condition for k on the walls is 0nk
w

=∂∂ , with n indicating the normal direction, and for ωt is 

specified in the wall cells according to the appropriate method in the wall treatment. The Equations (26) and (27) are 
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used as initial conditions for k and ωt, respectively, where I is turbulence intensity and L is length scale. In this research 

work, it was assumed the turbulence intensity equal to 1% and the length scale of 0.01 m at the calculation domain. 

These values are used in the rest of the calculation domain as an initial condition. β+ is a coefficient of the model. 

All these equations are discretized through the Finite Volume Method, which creates a system of linear algebraic 

equations that is solved iteratively using the Gauss-Seidel Method. The temporal terms of the equations are discretized 

using a fully implicit temporal scheme of 2nd order. The discretization of the advective terms of the conservation 

equations, responsible for the transport of scalar variables through the motion of fluid particles in the flow, is achieved 

by the interpolation function Second Order Upwind, more accurate than first order schemes. The method SIMPLE 

(Semi Implicit Linked Equations) is used to make the coupling between pressure and velocity calculations, ensuring 

good stability for the solution (Maliska, 1995; Star-CCM+, 2008; Akwa, 2010; Silva Júnior, 2010). 

Holding the solution of conservation equations and turbulence model, one can obtain the rotor moment, T, by 

integrating the forces resulting from the tensions that act on the buckets. The rotor moment is calculated by Eq. (28), 

where 
pressure
fF and 

shear
fF are the pressure and shear force vectors and d is a vector defining the axis through point 

 

x0 about which the moment is taken and kf
 
is the position of face f relative to x0. The pressure force vector on surface 

face f is computed from: pf that is the face pressure, df
 
that is the face area vector, and pref that is the reference pressure. 

As defined, this is the force that the fluid exerts on the surface. The shear force on surface face f is computed by the 

stress tensor at face f, τf, and df. This is the shear force exerted on the surface by the fluid (Star-CCM+, 2008). 
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With the moment value obtained by Eq. (28) and the value of the rotation rate, ω, which is imposed as a boundary 

condition in each simulation, the rotor power, P, can be calculated because ωTP = . Dividing the rotor power by the 

power available in the air flow that focuses on the projected area of the rotor, Ar, one can obtain the relationship 

between the power coefficient, CP, moment coefficient, CT, and the tip speed ratio of the rotor, λ. This relationship, 

which is used to calculate the dimensionless aerodynamics coefficients of the rotor, is represented by the Eq. (29), 

where r is the radius of the Savonius rotor. The results of this research work are expressed by the averaged moment and 

power coefficients as functions of tip speed ratio of the rotor for a Reynolds number equal to 433,500 (Akwa, 2010). 
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As the methodology adopted by Silva Júnior (2010), the value of time step, ∆t, used in the discretization of 

conservation equations, is related to the smaller size of the smallest cell in the discretized calculation domain, ∆xmin, by 

Eq. (30), where rint is the radius of the area enclosed by the boundary condition interface. For this equation, the space 

discretization is done coupled with the temporal discretization, ensuring Courant number of unit in all simulations (Star-

CCM +, 2008). 
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The flow conservation equations are then discretized and solved by Finite Volume Method, obtaining the necessary 

values for calculating the aerodynamics coefficients of the rotor. Simulations were performed to verify that the values 

of aerodynamic coefficients obtained by the method were independent of the level of discretization, using the rotor with 

0Rs =  and 1=λ , for meshes containing 39,889 and 329,869 cells. Using 329,869 cells to discretize the calculation 

domain, the averaged power coefficient differs only 2.26% of the value obtained with the use of 39,889 cells. Given the 

right combination of accuracy and computational effort, the space discretization in the other simulations were done in 

order to provide the average size of the cells of the order of 0.09 m to a value of about 0.0007 m for the value of ∆xmin. 

A computer simulation was also performed to a value of time step equal to half the value obtained by Eq. (30). This 
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simulation resulted in a value of averaged power coefficient that differs in 0.027% of the previous equivalent value, 

indicating that the use of the Eq. (30) provides satisfactory results. 

 

3. RESULTS AND DISCUSSION 
 

Pressure and velocity fields similar to those shown in Fig. 4 for the air flow over the rotor are obtained by solving 

the conservation equations of the flow by Finite Volume Method. In Figure 4, the complex flow of air over the 

Savonius rotor can be observed. In this figure, the pressure differences on the buckets, which generate pressure drag, the 

main strength related to the operation of this type of wind turbine can also be observed. Such fields obtained allow 

several qualitative analysis of the flow. 

The integration of the forces on the rotor buckets allows obtaining quantitative data of moment and power 

coefficients, which allow comparison with other studies. In Figure 5, the values of averaged power coefficients, which 

were obtained by simulation with Savonius wind rotor without buckets overlap and operating at different tip speed 

ratios (dimensionless rotation rate), can be observed. From Figure 5, it appears that the results are representative of the 

analyzed phenomenon because the simulated values are in agreement with those measured by Blackwell et al. (1977) 

for similar rotor and flow conditions. 

 

  

  
(a) (b) 

 

Figure 4. Fields of the air flow for Rs = 0.30 and λ = 1.25: (a) velocity; (b) pressure 
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Figure 5. Averaged power coefficient versus tip speed ratio for Rs = 0.00 
 

In the Figures 6 and 7, the obtained values for the averaged moment and power coefficients for other buckets 

overlap ratios are shown. Through these figures, it can be observe that the rotor has a better performance for Rs values 

of 0.15, with averaged power coefficient equal to 0.3161 for the tip speed ratio equal to 1.25. One can also observe that 

the high starting moment (for low values of λ) of a Savonius wind rotor increases as the values of Rs grow to a certain 

value from which the moment and performance of the rotor fall dramatically due to the decreased incidence of air on 

the concave side of the rotor buckets. 
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Figure 6. Averaged moment coefficient versus tip speed ratio 
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Figure 7. Averaged power coefficient versus tip speed ratio 

 

In Figure 8, the velocity vectors for the condition of better rotor performance are displayed. The air flow between 

the rotor buckets which increases pressure on the concave side of returning bucket and improves performance does not 

occur satisfactorily for low values of Rs. Recirculations that promote loss of momentum occur for extreme values of Rs. 

 

 
 

Figure 8. Velocity vectors for Savonius rotor operating at Rs = 0.15 and λ = 1.25 
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4. CONCLUSIONS 

 

This study is developed in order to verify numerically the influence of different buckets overlap ratios in the 

performance of Savonius wind turbines, with the aim of optimizing the geometry of the wind device. This research 

work gets physically consistent results and has good agreement with another study. Thus, one can conclude that the 

used parameters are suitable for this analysis. The obtained pressure and velocity fields are as expected. The 

configuration that shown best performance is the one for which Rs = 0.15, which gives an averaged power coefficient 

equal to 0.3161 for the tip speed ratio equal to 1.25. The use of buckets overlap creates spacing between the rotor 

buckets, allowing the passage of air from the advancing bucket for the returning bucket. This leads to an increase of 

moment in this rotor type to a limit value. This increase in the rotor performance occurs because the air flows from the 

advancing bucket for the returning bucket increasing pressure on the concave side of the returning bucket and reducing 

the drag force on this rotor part. However, for high buckets overlap, the moment and performance of the rotor fall 

dramatically due to the decreased incidence of air on the concave side of the rotor buckets. 

In future researches, new settings for wind rotors can be analyzed so it can get an optimized model. It is interesting 

also perform 3D simulations of rotor to the 3D parameters that affect performance, such as aspect ratio, can be 

analyzed. Moreover, effects of the terrain, turbulence intensity and shaft can be included in the simulations to provide 

more realistic conditions. 

This study confirms that the Finite Volume Method can be applied successfully to the study of Savonius turbines. 

The explained methodology is a promising tool, since it helps to steer future improvements of this rotor, optimizing 

their performance. 
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