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Abstract. Proportional-integral-derivative (PID) control is the most popular control architecture used in industrial
problems. Many techniques have been proposed to tune the gains for the PID controller. Over the last few years, asan
alternative to the conventional mathematical approaches, modern metaheuristics, such as evolutionary computation
and swarm intelligence paradigms, have been given much attention by many researchers due to their ability to find
good solutions in PID tuning. As a modern metaheuristic method, Biogeography-based optimization (BBO) is a
generalization of biogeography to evolutionary algorithm inspired on the mathematical model of organism distribution
in biological systems. BBO is an evolutionary process that achieves information sharing by biogeography-based
migration operators. This paper proposes a modification for the BBO using a diversity index, called Shannon-wiener
index (SW-BBO), for tune the gains of the PID controller in a multivariable system. Results show that the proposed
SW-BBO approach is efficient to obtain high quality solutionsin PID tuning.
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1. INTRODUCTION

One of the most popular controllers in industriedgesses is the proportional-integral-derivativilbjRcontroller.
This control strategy offers a simple and effecgeéution for many real problems. About 90% of toatrol problems
are solved by using some type of PID controllenihe, 1996). After its creation, around 1910, amel Ziegler-Nichols
tuning methods (Ziegler and Nichols, 1942) the payty of this kind of controller has grown. This imainly because
PID controllers have structure simplicity and megnbf the corresponding three parameters, which bEareasily
understood by process operators. Moreover, PIDralberts have the advantage of good stability amyh neliability.

The use of evolutionary algorithms to tune gain®td controllers has demonstrated ability of firglia set of
good solutions (Iruthayarajan and Baskar, 2009¢ &Wolutionary computation paradigms such as gemdgiorithm
(Altinten et al., 2008), differential evolution @mghong et al., 2008), evolution strategies (Inydhajan and Baskar,
2010), and evolutionary programming (Jiang and RRQ6) are able to find a reasonable solutions foblpms in
which classical methods based on gradient infoonatannot be applied or do not show good performaBgamples
in control systems are presented in Fleming angHwse (2002). A recent approach called Biogeogrhpked
Optimization (BBO) has shown promising results wlvig of complex optimization problems (Simon, 300
Biogeography is the science that studies the Higidn of species in an ecosystem and how specigs @ become
extinct. The main contribution of this paper isidate a new of BBO approach that uses a divers#gsurement to
increase the capability of scape from local optitnathis work, the classical BBO and the propos&DBbased on
diversity measurement are used to find the gainsa ahultivariable PID controller for a 2x2 industrszale
polymerization reactor.

The remainder of this paper is organized as follawsection 2 are presented the basic concep®Bfcontrol.
Section 3 describes the BBO algorithm and the megoapproach. The formulation of the problem isaitkt in
section 4. Sections 5 and 6 present the resulte@amdusion, respectively.

2. PID CONTROL FOR MULTIVARIABLE SYSTEMS

Consider the multivariable system (Multiple InpMsitiple Outputs, MIMO) shown in Figure 1, wheRgt) is the
set of reference signal¥(t) is the set of outputs andlt) is the set of control signals. The erreft), is the difference
between the output and the input signals. The obmssignals are calculated based on the error. Téwedard PID
controller is described by equation (1).



Proceedings of COBEM 2011 SPRrazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM  October 24-28, 2011, NaRiN, Brazil

Rt} eft) tit)

FID i L

MR System

Figure 1. MIMO system with the PID control.
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whereK,, K; andKq are the proportional, integral, and derivativengaof the PID, respectively, and t is the time.0Als
the integral and the derivative gains can be writte a function of the proportional gaki=Ky/ti andKs=Ktq, wheret;
andty are the integral and derivative time. The Laplaeasform can be applied to the controller to give following
transfer function:

G(s) = Kp(Ht—lstsJ (2)

where G(s) is the transfer function of the controller ane térror is the input and the output is the consighal.
Nevertheless, the derivative term of the contrati@n amplify some noisy signal and also causesldesuelevation of
the control signal when the set point changes. fiiteais applied to the derivative term of thentwller to avoid these
problems, thus the transfer function of the cofgrdbecomes the following:

G(s) =K 1+i+td_s ()
P s tys
i L+1

whereN is the filtering constant, normally used as a hanbetween 4 and 20.
For annxn multivariable systerhi(s), equation (4), the controller becomesnan matrix as given by (5).

hyy(8) - M (9)]
H(s)=| : U (4)
hln (S) o hnn (S)_

911.(5) e gnl.(s)_
G(s)=| : o (5)
gln (S) e gnn (S)_

where
S
0 (8) = Kp, | 1+ =+ —1— ©)

In order to measure the performance of the coetrolbur main kinds of performance criteria are lisua
considered: the integrated squared error (ISE), itiegrated absolute error (IAE), the integratemietiweighted
absolute error (ITAE) and the integrated time-wedghsquared error (ITSE). These criteria are ddfibg the
following equations:

£ = [ a2 + o0 + ...+ 0t ™
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ITAE = [ (la.0)] + e, (0)] +.. + e 0]t )
ITSE:J: (tel(t)z +te,(t)2 +...+ten(t)2)dt (10)

whereg, is the error of théth output related to thieth input.
3. BIOGEOGRAPHY-BASED OPTIMIZATION

The BBO algorithm, proposed by Simon (2008), ukesconcepts and models of biogeography. FurthernBB®
approaches have demonstrated ability to solve aodl gonvergence properties on various benchmargtibms and
engineering optimization problems (Rarick et al.020Kumar et al., 2009; Kundra et al., 2009; Sinatral., 2009;
Bhattacharya and Chattopadhyay, 2010; Gong e2@L0).

These models of biogeography describe how spedgsta from a habitat to another one and how speaiise or
become extinct. Each solution used in the algorithrmonsidered as a habitat and has a habitatbdititandex (HSI)
that measure the suitability of the habitat. Timdeix is related to aspects as, for example, rairfeaina and flora
diversities, topography, and environment tempeeatlihese aspects are also called suitability indedables (SI1V).

A good habitat has a high HSI, while a poor habi&d a low HSI. This means that good habitats nawe good
aspects than the poor ones. Habitats with highidé8& a high immigration rate due to their good etpavhereas poor
habitats have a low immigration rate but a highgration rate unlike good ones. The migration ratesdirect related
to the number of species in a habitat. So, a habith many species has a high emigration rateabse it is almost
saturated, while habitats with few species havé migmigration rate because do not have good camditto live in.
This migration process increases the diversity haf habitat and the miscegenation and contributethgospecies
information sharing and the mutation probabilitygufe 2 represents emigration and immigration &snation of the
number of species. In the FigurelZandE represent the maximum rates of immigration andgeation, respectively,
andSdenotes the number of species.

ey

Rate

Muber of Species

Figure 2. Emigration and immigration rates.

These concepts inspired the proposition of BBQh&algorithm the solutions are treated as habaadistheir good
aspects are shared based on the migration ratesddic algorithm of BBO is described in the follogvlines.

Sep 1: Initialize the parameters used in the algorithsy;, maximum number of specie§, emigration rate| the
immigration rate, andn_,, the maximum mutation rate.

Sep 2: Calculate the probability for each value of thentwer of species as follows:

P = (11)

wherej =1...,S,.,, and P is the probability for th¢-th habitat.
Sep 3: Generate an initial random set of habitats adogrtb the constraints of the problem.
Sep 4: Start the loop:

(4.i) Generate the immigration and emigration rates
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where/; and y; are the immigration and the emigration rateslieqjth habitat.
(4.ii) Calculate the derivative probability:

P.= ~(A* )P+ lorsPrny s=0
Iss = _(/]s + Ius) Ps + /]s—lps—l + lus+lps+1 lS s< Smax (14)
P.=~(A+ Z)P+ APy S=Spa

(4. iii) Update the probability:

P =P +Pjdt (15)
P.
P = (16)

wheredt is the derivative step.
(4.iv) Use the immigration and emigration ratesnodify each habitat and probabilistically mutate ihdividuals.
(4.v) Evaluate the habitats to make sure that timstcaints of the problem are satisfied.
(4.vi) Calculate the fitness of each habitat andirreto the beginning of the loop until a stoppimiecion is
achieved.

3.1 BBO based on Shannon-Wiener (SW-BBO)

The proposed SW-BBO approach uses a diversity inddgrly used to compute biodiversity in an ecosyst&éhe
index is called Shannon-wiener index (SWI) andaiswlated as follows:

H =_é p.log(p;) (17)

whereH is the diversity measurp, is the relative abundance of the specgiandSis the number of species.

This index is used to calculate the mutation farhelaabitat. To calculate the relative abundancepeties a simple
method is used: divide the search space into Slfpumf species) sub-divisions and then count thabar of species
in each habitat. For example: suppose a probleim idtvariables lying between 0 and 1, we want widdi the search
space into 4 levels (this is the number of spearab is a user defined parameter), so each varidbfending on its
value, will be a certain specie: specie 1 if ib&gaween 0 and 0.25, specie 2 if it is between @rth0.5 and so on. The
number of variables in each level is the speciasmtof each kind of specie. Table 1 shows a halgjeaterated
randomly with its species counts.
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Table 1. Example of habitat.

Value | Specie type
0.82 4
0.91 4
0.13 1
0.92 4
0.63 3
0.09 1
0.28 2
0.55 3
0.96 4
0.96 4

Based on the data of Table 1, the Shannon-wiedeixirs calculated as follows:

H =—{p,log(p,)+ p,log(p,)+ pslog(p,)+ palog(p,)] (18)
H= 110{2Iog( j + Iog(%j + 2Iog(%j + aog(%ﬂ (29)
H =1.2206 (20)

The SWI in the proposed approach is used to catetie mutation for each habitat (solution) asofol:

=(1-He
0-o-8) s

where m is the mutation probability of the-th habitat andH, is the SWI for the-th habitat. Note that the value 4 is
used to fit the SWI between 0 and 1, but a valwe tee4 or near to 0 are rarely achieved.

4. FORMULATION OF THE OPTIMIZATION PROBLEM

The problem is to find a configuration of the ga@ighe PID controllers that minimizes the objeetiunction. The
system to be controlled is an industrial-scale pw@sization reactor. The time scales are in hoursthe process
dynamic response is very slow. The two controlladables are two measurements representing théorezandition,
and the two manipulated variables are the refeentéwo reactors feed flow loops with load distumbe as the purge
flow of the reactor (Chien, 1999). The system dymang modeled by equation (22) given by

2289%e70% - 116404 - 42437
Vi(8) | 2| 4572s+1 1807s+1 |W(9)|,| 344%+1 [d(9)] (22)
Y, (s) 468% %%  580e7% ||U,()| | - 060k 0%

2174s+1 1801s+1 1982s+1

where y,(s) and y,(s) are the outputsy,(s) and u,(s) are the inputs andi(s) is the disturbance signal. The
controller used in this work is a diagonal matrixransfer functions, as shown in equation (23kgiby:

911(3) o - 0
Glg=| § 9= 0

0 0 g,

(23)

where each term is a controller with the same sirecof (6). As the system is a 2x2 system thencietroller
becomes:
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G(s) = 24
) [ 0 gzz(s) (24)
The goal is to find the configuration of the ga@righe two controllers that minimizes the objectfuaction. In this
paper the ITAE performance index, equation (9used in the objective function to be minimized. ®Bmeor signal is
defined as the difference between the input andthput, so there are two errors: one for the fiptt (related to the
first output) and another for the second input.iTtiee objective function becomes as follows:

f = ITAE(e,) + ITAE(e,) + ITAE(e,,) + I TAE(e,,) (25)

whereeg; is the error signal of thieth output related to thieth input.

Also a penalty function is used to avoid infeastidéutions. Infeasible solutions are those whicindbachieve the
reference or makes the system to be unstable. @ty function is described by the following (Cogll999):

p(X) = (Ct)”ilw(MI” (26)

where C, a and S are user defined constantsjs the current iteration of the algorithig, (X) is the violation of

thei-th constraint andp(X) is the penalty value for the solutidf In this case, the solutiok is an array containing
the gains for the controller given by equation (27)

X =[k toty by ] (27)

m’kpz’til’ ip?7dyr d2

So the objective function becomes:
F(X) = f +p(X) (28)
whereg (X) is the error of théth output related to thieth input when using the gains of .

5.SIMULATION RESULTS

Tests were carried out using Matlab® and Simulink®order to avoid the issues caused by random2€sans
for each optimization algorithm were made usindedént initial populations. The only one stoppirgezia used was
the number of generations that was equal to 20.0fier parameters were adjusted to: populatioresPsi20, number
of generation$5,,=20, maximum mutation rat®.,=0.7, and emigration and immigration ratesl=1. Note that the
parameters are the same for both algorithms

Table 2 shows the statistical comparison betweenstiiutions found by the algorithms. In Figures aré the
responses of the system with the best configurdtand by both BBO and SW-BBO methods of the cdigraains.
Tables 4 and 5 present the measurements of setitirteg (time for the response enter in a band of &%he final
response), rising time (time for the response aghitor the first time, the set point), and the maxm overshoot (the
maximum value of the signal).
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Figure 3. Response gfto a step in;.

Figure 3 shows that the responsegipfvith a step input applied m, are very similar for both techniques, but that
using SW-BBO s faster than the other using BBOwkeer, the regulatory response (Fig. 4) was bettegn using
BBO for tune the controller, because the overslimothis case was smaller and the settling time ala®st the same
for both cases.
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Figure 4. Response gf to a step inu,.

Figures 5 and 6 show that, for the servo respondetfee regulatory response (when inpathanges), the best case
was that using the SW-BBO algorithm to tune thengaif the PID controller. Table 3 presents the gagts found by
both optimization algorithms.
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Figure 6. Response gf to a step in;.
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Table 2. Comparison in terms of objective functiaf uns).

Method Best Worst Mean Stapdgrd
deviation
BBO 36.81| 4706263.45 235501.07 1052308.35
SW-BBO | 33.34 173.68 53.77 29.61

The worst solution of BBO is a controller that makée system unstable, wherefore the value of tijective

function is too large.

Table 3. Best configurations of PID gains.

Method Kp, Kp, ti, t, ta, tg,
BBO 0.142 | 0.119| 1.66 0.938 0.500 0.255
SW-BBO | 0.216| 0.097] 1.83¢ 0.72f 0.342 0.27/8

Tables 4 and 5 evaluate the responses and appeibest result. In those tablgss the settling timet, is the rising
time andm, is the maximum overshoot. Times are in hours Apchtaximum overshoot is the maximum absolute value
of the output. Note that when it is the regulatoage, the settling time becomes large becausehieime to stay in a
band of 2% of the final response, and the fingboese for the regulatory case is zero, so this tintke time to return

to the initial state.
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Table 4. Measurements when setpoint 1 changes.

Output ts t, m,
BBO Y1 2.3818 | 0.6547 1.121¢
Yo 19.9794 - 0.2569
Output i, t, m,
SW-BBO \ 2.1125| 0.1469 1.0768
Yo 19.6386 - 0.2053
Table 5. Measurements when setpoint 2 changes.
Output ts t, m,
BBO Y1 18.9856 - 1.0184
Yo 2.3821 | 0.656Q0 1.047p
Output iy [ m,
SW-BBO Y1 18.9205 - 1.1943
Yo 2.5437 | 0.7042 1.0495

6. CONCLUSION

This paper has presented a comparison betweenwwoti®nary optimization algorithms, the classi@é80O and a
new proposed SW-BBO approach, in PID tuning fortmatiable system. Simulation results clearly shibat for the
reactor problem, SW-BBO demonstrates better pedoaa than the standard BBO in PID tuning. Howetlegse
optimization algorithms were used for off-line Ptining. In future works they can be adapted fodine-tuning of
PID controllers in processes with slow dynamics.
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