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Abstract. This work is aimed at developing a beam reinforced plate model for structures used in oil platforms. The 
beam is modeled using plate theory and is placed in the union of two horizontal plates. The model takes in account the 
in-plane and the out-of-plane waves propagating at both plates and on the union beam. The results are then compared 
with Finite Element Model, through the use of a commercial software, showing an excellent level of accordance. The 
advantage of analytical models is that computational costs are  significantly reduced when compared to Finite Element 
Model. 
 
Keywords: plates, vibration, in-plane waves, out-of-plane waves 

 
1. INTRODUCTION. 
 

Offshore oil platforms are assembled basically with beam reinforced plates. This type of structure is characterized 
by a high density of machines and equipments assembled directly through the main structure. Vibrations generated by 
this sources are propagated through the main structure and can reach the lodging area, where the noise level should be 
controlled. 

For beam reinforced plates, the traditional existing models are developed with plates coupled with a beam model, as 
example  Euler or Timoshenko beam models. These models do not take into account the wedge and web resonances.  

Both the power flow transmitted  through the structure and the vibratory energy could be calculated using the 
correct value of the average spatial mean squared velocity,  2v , of each structure. One way of calculating this 
parameter is using the Finite Element Method (FEM). This method, however, is used only for low modal densities or 
low/medium frequencies, otherwise the processing time demanded would be extremely high. This comes from the fact 
that for high frequencies or high modal density the wavelength are smaller, so it is required a large number of elements 
to correct represent the system, making difficult the application for higher structures. 

The deterministic methods permit the analysis up to higher frequencies with low processing time, and without 
restrictions with components dimensions.  

This work consists in determining the response of a system composed as three plates connected in a “T” 
configuration. The plate on the union  represents the beam modeled using  theory of plates, where it is possible to 
simulate the beam in a more real way, considering the out-of-plane and the in-plane waves. The results are compared 
with the one obtained using a Finite Element Model commercial software. 

 
2. FUNDAMENTAL ASPECTS. 
 
2.1. OUT-OF-PLANE WAVES IN THIN PLATES  
 

This model deals with bending waves propagating in thin plates, being appropriate to thickness up to one 
decimal of the wavelength. For example, to a 10 mm plate thickness, the frequency range of analysis can be extended to 
5 000 Hz using this model. 

For a thin plate, with thickness h and  finite dimensions a and b, as showed on Figure 1, with a differential 
element with volume  dydxh , the  shear forces, twist moment and bending moment are supposed to act. 
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Figure 1. Thin plate element submitted to forces and moments. 
 
 

The governing equation for a thin plate submitted to a distributed load )t,y,x(q  is (Graff, 1991): 
 

)t,y,x(q
t

)t,y,x(wh)t,y,x(wD 2

2
4 




                         (1) 

where the term )t,y,x(w  is the medium plane deflection 
This equation is generally applied to plate thickness up to ten times the wavelength and the solution describes 

the behavior of the out-of-plane waves. 
 

2.2. IN-PLANE WAVES IN THIN PLATES  
  
 For a thin plate element, submitted to in-plane forces, as showed on Figure 2, the in plane efforts xN  and yN  
by length unity, arising from normal stress x  and y  and the effort xyN  generated by xy , are given by (Flugg, 
1966). 
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Figure 2.  Thin plate submitted to in-plane loads. 
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The resultant equation of motion for x and y directions are given by (Hwang and Pi, 1972): 
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2.3. BENDING WAVES SOLUTION 

 
For a thin plate, with a zero distributed load )t,y,x(q  , Equation (1) can be rewritten again as: 
  

0
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            (7) 

 
The general solution for a bi-supported plate that satisfies the differential equation (10) can be expressed in the 

following way: 
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The base functions  xn  are given by (Bonifácio, 1998): 
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Then, the transversal displacement in the plate are written as: 
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where the constants 1A , 2A , 3A  and 4A  are calculated through the boundary conditions applied on the plates edges. 
 
2.4. IN-PLANE WAVES SOLUTION 
 

The configuration of in-plane forces are showed in Figure 2. The Equations (8) and (9) are the differential 
Equations for in-plane displacements and are coupled. Those equations should be uncoupled and solved separatelly. 
This is solved writing the displacements in the plane, called u  and v , in terms of potential functions for longitudinal 
deformation and shear rotation, represented by d  and s , respectively, as (Mccolumn, 1988): 
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and the potential functions are given by: 
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Using Equations (16) and (17), the uncoupled differential equations are written in the following way: 
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where the wavenumbers are given by ll ck   and  ss ck  , and lc  and sc  are the longitudinal and transversal 
shear waves velocities, respectively. 

The terms E(x) and )x(T  are written as the sum of two propagating waves in opposite, one in the positive axis 
direction and the other in the negative axis direction: 
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After substitution of Equations (15) and (16) in (13) and (14), the uncoupled equations that describes the in-plane 

movement are obtained: 
 

  tj

1n
y

xk
2y

xk
2y

xk
11

xk
11 eyksen}eBkeAkeBkeAk{)y,x(u 2211 





        (19) 

 

  tj

1n
y

xk
22

xk
22

xk
1y

xk
1y eykcos}eBkeAkeBkeAk{)y,x(v 2211 





       (20) 

 
where 1A , 1B , 2A  and 2B  are the constants to be determined. 

The boundary conditions are applied through Equations (19) and (20) for the displacements and (2), (3) and (4) for 
the efforts applied on the edges. 
 
 
3. PROPOSED ALGEBRAIC FORMULATION 
 
3.1. CONFLATION OF THREE PLATES INTO A “T” SHAPE 

 
Considering three coupled plates jointed in a T configuration, as shown on Figure 3, plate 1 can be submitted to 

four different load distributed at the edge, )y(Mx , )y(Nx , )y(N xy  and )y(Qx .  
 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

t

b

h

z

x
y

1

2

nxN
nxM

 

 

Figure 3 – Three coupled plates in a T configuration. 

 
The functions describing the in-plane response, u and v,  and the transversal displacement, called w, at the plates 1, 

2, or 3 are given by: 
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 Figure 4 shows the representation of the loads acting on each plate and the continuity condition that must be 
satisfied. In these cases, there are 24 equations and  24 constants to be determined for each frequency and for each  load 
component. 
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Figure 4 – Loads acting on plates 1, 2 and 3. 

 
The distributed loads acting on plate 1 are written for each component as: 
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The continuity conditions at the plate union and the internal force and moment equilibrium conditions are written 

on the appendix. 
 The result is a system of 24 equations which solution  gives the 24 constants ( 1A  to 8A  and A  to I ), for each 

frequency. After the constants are calculated, it is possible to calculate the response at any point on the plate, using 
equations  21 to 29. The terms at matrix T  represent the equations coefficients and vector P  is the load vector. 
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4. RESULTS AND DISCUSSION 
 
4.1 VALIDATION 
 

In the following example, there is an analytical model of a three-coupled inverted T plate. The plates are 5 mm 
thick, 1 m wide and 0.5 m long. The material is steel, with Young Modulus 29 /10210 mNE  , material density  

3/7850 mkg and Poison coefficient 3.0 . The structural damping is 01.0 . 
 The following distributed load is considered for the edge: 
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where n is assumed to vary from 1 to 2. In this way, the load is given by the addition of two sinusoidal components. The  
amplitudes of the loads (moments) are 1MM 21  . The response of the plate is calculated at two points, as shown  
on Figure 5 (point 1 -  x = 0.2, y = 0.15 and z = 0 and point 2 – x = 0, y = 0.15 and z = 0.325). Figures 6 and 7 show the  
comparison between the response obtained with the analytical model, calculated with the software Mathematica, and a  
Finite Element Model up to 1000 Hz. The Finite Element Method was applied using the software ANSYS 5.3, 
educational version. The full method was used for the harmonic analysis, since it is more accurate than the modal  
superposition, however, the processing time is greater. The plate element initially used was SHELL 63, from the 
ANSYS library,  and has four nodes and six degrees of freedom per node. Further analysis was then carried out using 
the element SHELL 93, with eight nodes and six degrees of freedom per node. The results obtained were very close to 
those for SHELL 63. The SHELL 63 element was used, since this model requires less processing time.   
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Figure 5  – Three coupled plates in a T configuration. 
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Figure 6 - Transversal displacement w  on plate 1. Comparison between the analytical model and the Finite Element Model. 
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Figure 7 - Transversal displacement w  on plate 2. Comparison between the analytical model and the Finite Element Model. 
 

 
5. CONCLUDING REMARKS 

 
The “T” plate model represents with very good accuracy the dynamic behaviour of beam reinforced plates, as used 

in offshore platforms and considering the own modes of the beams. 
The results show a very good agreement between the analytical solution and the Finite Element Method. It can 

therefore be concluded that the solution for the connected plates, works well for all the frequencies spectrum selected. 
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  High frequency analysis for plates reinforced beams can be easily achieved, in a really small processing cost. The 
response obtained can be used for verifying the importance of in-plane and out-of-plane waves, depending on the  
frequency range. This step will be verified in further analysis. 

  The next step is the application of this model to calculate the coupling loss factor between plates reinforced by 
beams to be used in a Statistical Energy Analysis (SEA) model. 
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APPENDIX 
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