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Abstract. One of the limitations of the Finite Element Method is the lack of precision in the estimation of the high-
frequencies eigenmodes. In general, considering a frequency range, the eigenmodes obtained by the Finite Element 
Method represent a small percentage of the total number of eigenmodes. This problem is even worse when high-order 
finite elements with low regularity are employed in the numerical analysis. When excited by impulsive forces, the 
precision of the mechanical wave propagation in elastic solid media depends on the precision that one can represent 
the eigenmodes. In this sense, the larger the number of modes that can be represented more precisely, the more 
accurate representation of the propagating wave. In this work we present a Generalized Finite Element Method 
(GFEM) that is used to solve the free vibration and wave propagation problem in elastic solid media. The proposed 
GFEM generates high regularity approximation spaces. More specifically, we explore the p version of the method in 
which the Partition of Unity, which are constructed based on rational polynomial weight functions, are enriched by 
monomials of order p. The dynamic solution is obtained based on the implicit Newmark method and the modal 
superposition. Cases of study are carried out considering linear elastic rods and axisymmetric plates and shells 
submitted to impulsive forces. 
 
Keywords: Natural frequencies, wave propagation, GFEM. 

 
1. INTRODUCTION 
 
 The problem of obtaining high natural frequency modes precisely by using numerical methods is still an open 
research topic that includes several proposals. The Finite Element Method (FEM), which is currently a consolidated 
method, has some limitations in accurately obtaining natural frequencies. Several works in the literature deal with the 
correct determination of eigenmodes in elliptical problems. An a priori error estimator for the so-called h version of the 
FEM, see Hughes (1987) and more recently Givoli (2007), is available. This error estimator is  

( ) ( ) ( )2 1 / 1λ λ λ− + += − ≤ p s p sh
n n n ne Ch ,  (1) 

where λn  is the exact nth eigenvalue, λ h
n  is the FEM approximation eigenvalue, h is a mesh parameter, i.e., the size of 

the largest element in the mesh, C is a constant independent of h and λn , p is the polynomial degree of the FEM 
approximation space and s is the regularity of the FEM approximation space ( sC ).  

In the work presented by Cottrell et al. (2007a, 2007b), the outstanding superiority of the so-called k-method, 
as compared to the FEM results, for finding the eigenmodes of elliptic eigenvalue problems was presented. The results 
presented by this work showed an absence of acoustic and optical branches.  
 In this work, we employ a Generalized Finite Element Method (GFEM) equipped with an approximation space 
that has high order and regularity. The Partition of Unity (PU) generated in this work is obtained by rational polynomial 
weight functions and presents regularity ( )0 , 0, 2, 4Σ =kC k . In addition, the PUs are homogenously enriched by a set of 
monomials of p. Some examples are presented to attest the use of the proposed methodology in addressing of free 
vibrations and wave propagation problems in linear elastic media. 
 
2. ENRICHED GFEM APPROXIMATION SPACE 
 
 The GFEM is derived from the methodologies that construct the approximation space based on the PU 
concept; see Melenk and Babuska (1996) and Oden et al. (1996). The enrichment procedure used in this work consists 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 
in the multiplication of a shape functions, which is  based on a rational polynomial weight function, defined on a nodal 
position of the element of the integration mesh, by a set of monomials of a given order p. The nodes to be enriched can 
be selectively selected, by means of an error estimator and p-refinement, or simply homogeneously selected. In the case 
of curved domains, which is one of the purposes of analysis of this work, the enriched functions are defined on a 
parametric domain Σ  and then mapped to the physical domain by a vector mapping function ( )sX , where s is the arc-
length, see Fig. 1. For a detailed description see Garcia and Proença (2007).  
 The enriched approximation space is equipped with all the possible linear combinations of a finite dimension 
space generated by the product of PU functions αϕ  by a set of functions α

pQ , which is the Local Approximation Space. 
Here α  is the node or particle number. Some important definitions are presented in order to aid the presentation of the 
global approximation space. The global approximation space of order p is defined as  

{ }
1α α α

ϕ
=

⎡ ⎤ℑ = ⎢ ⎥⎣ ⎦
Np p

N span Q   (2) 

 Figure 1 shows an example of a local space generated by a PU formed by linear functions. In this example 

{ }2
2 1, ,ρ = s s  and the local approximation space is given by { }2 21, ,α

⎡ ⎤= ⎣ ⎦Q span s s . Figures. 1(b) and 1(c) show the 

functions 2
αψ  and 3

αψ  that are the basis of the enriched approximation space. Figures 1(d) and 1(e) show the mapping 
:Σ→ΩX , which maps the enriched PU approximation space from the parameterized domain to the physical domain, 

see Garcia and Proença (2007). 
  

 
 
Figure 1 - Examples of mapping from the parametric to physical domain. (a) Linear PU; (b) 2

α
αψ ϕ= s ; (c) 2

3
α

αψ ϕ= s ; 
(d) Mapping function 2

αψ  in the physical domain; (e) Mapping function 3
αψ  in the physical domain. 

 
2.1. PUs constructed based on rational polynomial weight function  
 
The PU functions presented in this work are Shepard functions that are constructed based on rational polynomials 
weight function. In a general manner, the weight functions are defined on R  as follows: Let the weight functions 

:α →W R R  be such that 0 , 0α ∈ ≥kW C k , with the following features: 
 

i. ( ) 0,α ≥ ∀ ∈ΣW s s , 

ii. ( ) ( ) 0, , 0α α α α= − ∈ ≥kW s W s s W C k  and 

iii. { } .αα ω +∀ ∈Σ→ ∈ ≤ ∈s card s M N∣  
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( )
( ) ( ) ( )

( )2
2

2 0,   0, ; 0,   0 and 0,    ρω+ = ∀ ∈ = = = =
x x

x x
d u duu x L u x x L

E dxdx  (6) 

The solution of Eq. (6) is given by an infinite set of countable pairs ( )( ),ωn nu x , 1,2,...,= ∞n  where 
2 2 2 2 2
1 2 1 10 ,...., ,...ω ω ω ω ω< < < < <− +< < ii i  with  

,     1,3,5,....., 2 1;    1, 2,3,...,
2

πω
ρ

= = − = ∞n
j j n n

L E

  (7) 

and 

( ) ρ ω⎛ ⎞= ⎜ ⎟
⎝ ⎠n nu x Csen xE .  (8) 

The weak for of the problem can be enounced as: Find ∈u Kin  such that 

2 0,    
0 0

ω ρ− + = ∀ ∈∫ ∫
L Ldu dvE dx uvdx v Var

dx dx
.  (9) 

where  

( ){ } ( ){ }1 1and/ , 0 / 0, 0= ∈ Σ = = = ∈ Σ = =Kin u H u u x Var v H v x . (10) 

The discretized GFEM formulation is given by  

2

0 0
0ω ρ− =∫ ∫

L LT TE dx dxB B N N ,  (11) 

in which  

; ,1 1 1 1 1 1
,,1 2 3 1, 2, 3, 1,..., ;   1,..., .α αψ ψ ψ ψ ψ ψ ψ ψ ψ ψ α⎡ ⎤⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦

n n
p p xi i xx x x n i pN B (12) 

In Eq. (12) αψ i  is the global shape function of order i associated with the node α .  
Figures 3(a) and 3(b) shows the results achieved by the solution of the eigenvalue problem considering two 

different approximation spaces. The results presented in these figures are shown in terms of the normalized values of 
the natural frequencies versus the normalized number of nodes used in the analysis. In these figures hw  is the 
approximated result while w  is the analytical result. Fig. 3(a) presents the results achieved using the MEF, in which 50 
elements were used, where the order p of the approximation was augmented accordingly to follow order: linear, 
quadratic, cubic and quartic. On the other hand, Fig. 3(b) shows the results obtained using the proposed approximation 
space keeping the same discretization but the enrichment of { }1, 2,3,4=p . 

The results presented in Fig. 3(a) were achieved based on 0
0C  MEF. For linear approximation the result is 

smooth but has low precision. However, when the order p is augmented (quadratic, cubic and quartic) there are severe 
jumps in the numerical solution. Although the procedure presents good precision in the first part of the analysis, jumps 
in the solution are presented denoting the appearance of the acoustic and optic branches in the spectrum. The jumps are 
followed by a lost in the numerical solution precision. On the other hand, when the proposed enriched approximation 
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The analytical solution of the problem defined by Eq. (13) is given by Eq (15) for a time interval greater than oT , 
which is the time interval of the external load imposition. The Eq (15) is obtained based on a zero distributed load, see 
Clough & Penzien (2003). 
 

( ) ( )( ) ( ) ( )( ) ( )2
1

2 sin
, sin cos cos ,   ω ω

μω
∞

=
⎡ ⎤= − − ∀ >∑ ⎣ ⎦

j
j j o j

j j

F k Lox t k x t T t t ToL
u  (15) 

 
In Eq.(15), ω j  is the natural frequency of order “j”, ( )2 1 2π= −jk j L  and μ  is the linear density of the material 

of the bar. 
The weak formulation is derived by the used of the Galerkin procedure and can be stated as: Find ( ), ∈x t Kintu  

such that: 
 

( )
2

2 2
0 0 0

,   ∂ ∂ ∂
+ = + ℑ ∀ ∈∫ ∫ ∫∂ ∂ ∂

L L LEAEA dx dx q dx t Vartx x c t
u v u v v v

 
 (16) 

 

The sets tKin  and tVar  are defined by:  
 

( ) [ ]{ } ( ) [ ]{ }1 1and/ 0, 0, 0, / 0, 0, 0,= ∈ Σ = = ∈ = ∈ Σ = = ∈t tKin H x t T Var H x t Tu u v v  (17) 
 
The semi-discrete formulation of the problem is obtained by the use of 
 

( ) ( ) ( ) ( ) ( ) ( )and, ,= =h hx t x t x t x tN Nu U v V   (18) 
 

where ( )xN  is the matrix of approximation functions defined on Eq.(12), which depends only on the position variable  

“x” and ( )tU and ( )tV  are the vectors of nodal values of displacements, which are function of time “t”. ( )tU and 

( )tV  are  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
1 2 1 2andα α⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

T n T n
i p i pt u t u t u t u t t v t v t v t v tU V  (19) 

 
with 1,..., ;   1,..., .α = =n i p  The matrix B  used in the propagation problem is defined by Eq.(12). The semi-discrete 
form that corresponds to Eq.(16) is now 

 

( ) ( ) ( ) ( )
0 0 0

μ+ = ℑ +∫ ∫ ∫
L L L

T T T TEA dx t dx t t q t dxB B N N N NU U . (20) 

 
The Eq.(20) can be written in its compact form as  
 

( ) ( ) ( )+ =t t tK MU U F   (21) 
 

where 
 

0 0
and μ= =∫ ∫

L L
T TEA dx dxK B B M N N

 
 (22) 

 
and 
 

( ) ( )
0

( ) = ℑ + ∫
L

T Tt t q t dxN NF .  (23) 

 
3.2.1. Propagation results 
 

The phenomenon of propagation in a rod is studied by means of the wave front effects in the displacement field. The 
essential boundary conditions state that the displacement and the velocity fields are zero on the clamped end and an 
impulsive force, natural boundary condition, is applied in the free edge. The impulsive force is 
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frequencies, that is, frequencies greater than 10% of the number of dof estimated by 2ω⎡ ⎤− =⎣ ⎦K M 0U . The results are 

compared with a reference solution, which is given by the “rule of thumb”, see Givoli (2007). The spherical cap model 
is depicted in Fig. 9, where the geometry, material and boundary conditions are shown. The results are in terms of the 
normalised natural frequency obtained from strategies i, iii and v, relative to the reference solution. Here, a constant 
thickness of t = 3 mm is assumed. In this analysis, 52 (602 dof) quadratic axisymmetric elements were uniformly 
distributed for the reference solution. The number of eigenvalues, M, that can be obtained with an error, 0.001ε = , 
predicted by the reference solution, “rule of thumb”, is 106=M . The results for the selected strategies are presented in 
Table 1. 

The subscript “i” in Ωi  in Table 1 indicates the number of the mode associated with the natural frequency and 
“p” is the order of the approximation space. Notice that up to the mode number 10, the results are precise for all 
strategies. However, after this value, the results begin to suffer monotonic deviations in strategy i and oscillatory 
behaviour in strategy iii. On the other hand, in contrast to the other strategies, the results for strategy v show lower error 
for modes greater than 20.  
 
4. CONCLUSION 
 

In this work, an approximation space generated by a proposed GFEM is used in numerical solving problems of 
free vibrations and wave propagations in elastic media. The proposed GFEM is based on a particular class of weight 
functions, which assures regularity kC , k even, and were enriched using monomials up to a desired order p. Special 
attention is given for axisymmetric plates and shells problems. In general, the results presented in this work show the 
positive influence of the approximation space regularity on the capturing of free vibration and mechanical wave 
propagation. In the  simple rod problem, it is shown that higher the regularity of the approximation space, higher 
number of frequencies obtained with accuracy. The results observed in the rod free vibration problem are corroborated 
by the numerical results achieved for the axisymmetric spherical cap problem. For the plate case, some limitations were 
observed related to the kinematic model that leads to the occurrence of locking phenomena, which is evidenced in first 
natural mode. The results clearly show the locking presence when using second order enriched GFEM spaces, however, 
less severe than in the static problem. They are circumvented by using higher approximation spaces. It is evident the 
influence of the approximation space regularity on the accuracy of modes greater than 10% of the number of degrees of 
freedom. Despite not providing results for spaces constructed to approach two or three dimensions problems, it is 
believed that the results must confirm the results observed in this work. Studies are been conducted to investigate the 
properties of the proposed approximation space in higher dimensions.  
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