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Abstract. The purpose of this work is to validate a FE code to proceed an evaluation of dinamical response of a beam 

undergoing impact or dynamical loads. This code is based in the Timoshenko beam element and can calculate a 

dynamic evolution in time domain by Newmark scheme. The validation is made considering a cantilever beam 

example. The problem analytical solution is compared with two numerical simulation via FEM: (a) a modal analysis 

and (b) a time domain analysis of vibration response. 
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1. INTRODUCTION  

 

Some approaches for the simulation and the study of hydrogenerators exist currently. Each one of them depends on 

the type of problem and on the available tools to carry on the analyses. It can be used analytical or numerical 

methodologies being both valid depending of course on the considered situation (Rao, 1996; Juvinal, 2000; Steidel, 

1989).  

One of the problems that can be present in the hydrogenarators turbines operation is the unbalancing. This type of 

situation might be the result of problems that occurs in assembly, manufacture, transport or the combination of some of 

them. These factors may cause magnetic or mass unbalancing, or both. 

This work is a part of a project developed at this institution for the evaluation of the structural integrity of 

hidrogeradores components submitted to a magnetic unbalancing. In this project it was created a finite element code to 

calculate the reactions in the bearings and the proposal of wear model in these components. Hence, as it deals with 

magnetic forces and dynamic reactions, the problem might present non-linearity.  

The aim of this work is to validate a finite element code using the Timoshenko beam theory. This code will be used 

for a dynamic simulation of a hydrogenarator under magnetic unbalancing. This type of problem may undergo to non-

linear and non-proportional loadings, which is the reason for choosing a time-step analysis by using the Newmark 

algorithm.  

The validation of this code will be made considering a cantilever beam situation, which the analytical solution for 

the natural frequencies is known. Considering this situation, the code will be used (a) to calculate the natural 

frequencies by numerical modal analysis and (b) to calculate the resonance frequencies by Fourier transform applied on 

the time-step response obtained by Newmark algorithm.  

 

2. NUMERICAL BACKGROUND 

 

2.1 Dynamic equation 

 

In order to simulate situations of dynamical behavior of turbines, the ordinary differential equation in discrete 

dynamic problems was adopted (Zienkiewics, 1991): 

 

0fKuuCuM =−++ &&& , (1) 

 

where u  and f  are, respectively, the displacement and applied force in respect to time, and M , C  and K are the 

mass, dumping and stiffness matrices, respectively.  

 

2.2 Finite element model 

 

In this work, a finite element model adopted is based on Timoshenko beam theory (Hughes, 2000; Reddy, 1993) 

with linear interpolation functions, i.e. an element with two nodes. The chosen element has three-dimensional 

displacement and three rotations, as depicted in Fig. 1a. One can see that considering a two node element (Fig. 1b) there 

will be six degrees of freedom for each node and twelve degrees of freedom for an element. Thus the displacement 

vector of an element is 
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where j
iu and j

iθ  are respectively the displacement and rotation of node j  at the direction ix . 

 

 

 

 
(a)  (b) 

 

Figure 1. Coordinate axis over the Timoshenko beam element. 

 

Moreover, it will be not take into account the shear effect and will be considered a circular cross-section with radius 

r  for the model. Gathering together all these considerations, it leads to the calculation of the element stiffness matrix as 
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where A is the circular cross-section area, E is the Young’s modulus, L is the element length, G is the shear modulus, J 

is the torsional moment of inertia and I is the area moment of inertia. 

Using the same considerations listed above, it can be found a distributed element mass matrix as 
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 (4) 

 

and ρ  is the specific mass of the material and AIrg =  is the radius of gyration. 

The damping and the gyroscopic effects will not be considered. Therefore, the term C  of the Eq. 1 turns zero. 
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To solve the equation 1, it was used the Newmark algorithm, which is one of the most popular for dynamic analisys, 

is a time-step based and is able to calculate the dynamic response of models subjected to non-linear loads 

(Zienkienwics, 1991; Du et. al., 1995; Cepon et. al., 2007). This algorithm, known as the Newmark scheme, is shown in 

the next section. 

 

2.3 Newmark scheme 

 

Proceeding to the discretization of the equation 1 in a time-step scheme, considering 
nn ttt −=∆ +1

 as a time 

interval between the steps, it is found a new equation with the displacements and forces at the end-points of the interval: 

 

0fKuuCuM =−++ ++++ 1111 nnnn
&&& . (5) 

 

To solve this second-order problem, a quadratic expansion is the minimum requirement. Therefore considering the 

generic Newmark algorithm the expansion of 1+nu&  and 1+nu  with truncated Taylor series gives (Zienkienwics, 1991) 
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where 1β  and 2β  are the Newmark parameters. These, together with Eq. 5, allows the three unknowns 1+nu&& , 1+nu&  and 

1+nu  to be determined. The 1+nu&&  can be obtained by substituting Eq. 6 into Eq. 5. It yields 
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After the calculation of 1+nu&& , the values of 1+nu&  and 1+nu  can be found using the equations 6. 

The choice of Newmark parameters, 1β  and 2β , play a important role in stability of the algorithm. The 

unconditional stability can be achieved by adopting (Zienkiewics, 1991) 

 

2
1

21 ≥≥ ββ . (8) 

 

However, some authors adopt the values 
2

1
1 =β  and 

4

1
2 =β  to obtain the second-order accuracy (Brank et. al., 

2003). 

 

2.4 Fast Fourier transform (FFT) 

 

In the previous section was presented a Newmark algorithm, which is able to evaluate the dynamic evolution of the 

displacements, i.e. presents the results of dynamic response over the time domain. However the validation of the FE 

model developed in this work is only possible at frequency domain due to the existence of analytical solutions for 

modal analysis (Steidel, 1989). To proceed the transformation from time domain to frequency domain, it was applied 

the fast Fourier transform algorithm (FFT) onto the discrete time-step results (Oppenhein et. al., 1989; Bendat et. al., 

1989). The application of this algorithm in a local displacement nu , where n  is the time-step index varying from 1 to 

N  (the total steps in time), yields the expression 

 

N

nkiN

n

nk eup

π2

1

−

=

∑= , (9) 

 

where the values of kp are the amplitudes in frequency domain. To plot graphs of amplitude versus frequency in 

hertz, the corresponding abscissa can be obtained by 
tN

k

∆
. 



 

3. VALIDATION OF FE CODE 
 

A finite element code was developed using a free software called Scilab (2007). To validate the code it was 

chosen three situations that have well documented analytical solutions of the modal analysis (Steidel, 1989). These 

solutions will be compared to numerical solutions. These situations are: longitudinal (Fig. 2a), transverse (Fig. 2b) 

and torsional (Fig. 2c) non-forced free vibration of a cantilever beam with a circular cross-section. The material 

and geometrical properties used for the validation are: 

 

,9.0,05.0,/7850,3.0,200 3
mLandmrmkgGPaE ===== ρν  (10) 

 

where ν is the Poisson ratio, r  is the circular cross-section radius and L  is the length of the beam. 

 

   
(a) (b) (c) 

 

Figure 2. Cantilever beam and the three situations of vibration. 

 

3.1 Analytical solution 

 

The analytical solutions for the situations depicted above (Fig. 2) are presented into wave differential equations 

(Steidel, 1989). Moreover, the calculation of natural frequencies for some geometries considering simple boundary 

conditions and free vibration are straightforward.  

The solutions for the natural frequencies for the first three modal vibrations are: 
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These equations 11, 12 and 13 with the validation values (10) yield the results in table 1. 

 

Table 1. Results of analytical solution. 

 

Longitudinal vibration Transverse vibration Torsional vibration 

Hzf lon 1,14021 =  Hzf tra 165,871 =  Hzf tor 54,8691 =  

Hzf lon 3,42062 =  Hzf tra 34,5462 =  Hzf tor 6,26082 =  

Hzf lon 5,70103 =  Hzf tra 9,15293 =  Hzf tor 7,43473 =  

 

 

 

3.2 Modal analysis with FE model 

 

The calculation of the natural frequencies by a modal analysis via finite element analysis for the situations 

depicted in Fig. 2 considering no damping nor gyroscopic effect is easy when the response function of the vector 

of nodal global displacements is considered as 
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( ) ( ) ( )ftfttm ππ 2cos2sin bau +=  (14) 

 

where a and b are amplitude vectors, f  is the vibration frequency and t  is the time. Moreover, substituting the 

function ( )tmu  (Eq. 14) into u  of the movement equation (Eq. 1) with 0C =  and 0=f  (non-forced vibration), it 

is obtained 
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which is an eigenvalues problem where the biggest eigenvalue leads to calculation of a natural frequency of a first 

vibration mode, the second biggest leads to calculation of a natural frequency of a second vibration mode and so 

on. It was adopted the finite element model shown in the Section 2, i.e. the element vectors and matrixes showed 

in 2, 3 and 4 (Timoshenko beam element with two nodes) was considered. The FE mesh is homogeneous, has the 

orientation depicted in Fig. 3 and present q  elements, which will be chosen by proceeding a convergence analysis. 

 

 
 

Figure 3. Mesh orientation. 

 

The convergence analysis consists in the calculation of the third longitudinal vibration mode by FE analysis 

and the comparison of the results with the analytical solution Hzf
lon 5,70103 =  (Tab. 1). A variation of the 

element number q  was made, the eigenvalue problem (Eq. 15) was mounted and the natural frequencies were 

calculated. The results are shown in table 2. It was observed during this analysis that the considered mode (third 

longitudinal mode) is the sixteenth mode in the implemented FE model. 

 

Table 2. Mesh convergence analysis results. 

 

Number of mesh 

elements q  
Natural frequency 

by FE analysis (Hz) 

10 7191.8 

20 7055.6 

40 7021.7 

80 7013.3 

160 7013.3 

 

The difference of mesh results with 40=q  compared to 160=q  is less than 0.12%. Therefore the chosen 

value for q  is 40. With this result the validation procedures can proceed.  

Considering the mesh (Fig. 3) with 40=q , the FE analysis will be made by calculating the eigenvalues 

problem of Eq. 15 and comparing the modal shapes with the known ones (Steidel, 1989). It can be noted that the 

results of the numerical calculation will lead to two values of natural frequency of transverse vibration mode 

(along 2x  and 3x ). It will be considered only value along 2x  for comparison to analytical results (Tab. 1). 

Proceeding to this modal analysis via finite element it was achieved the values and the number of the 

corresponding mode showed in Table 3. The figures 4, 5 and 6 depict the modal shapes of longitudinal, transverse 

and torsional vibrations, respectively. 

 

 

 



Table 3. Modal analysis via finite element. 

 

Mode Natural frequencies (Hz) Type of vibration and corresponding shape. 

1
st
 87.023 1

st
 transverse mode (Fig. 5a) 

3
rd

 539.63 2
nd

 transverse mode (Fig. 5b) 

5
th

  869.60 1
st
 torsional mode (Fig. 6a) 

6
th

 1402.2 1
st
 longitudinal mode (Fig. 4a) 

7
th

 1486.1 3
rd

 transverse mode (Fig. 5c) 

9
th

 2610.1 2
nd

 torsional mode (Fig. 6b) 

12
th

 4208.7 2
nd

 longitudinal mode (Fig. 4b) 

13
th

 4344.7 3
rd

 torsional mode (Fig. 6c) 

20
th

 7021.7 3
rd

 longituinal mode (Fig. 4c) 

 

   
(a) (b) (c) 

 

Figure 4. Longitudinal vibration: (a) mode 1, (b) mode 2 and (c) mode 3. 

 

   
(a) (b) (c) 

 

Figure 5. Transverse vibration: (a) mode 1, (b) mode 2 and (c) mode 3. 

 

   
(a) (b) (c) 

 

Figure 6. Torsional vibration: (a) mode 1, (b) mode 2 and (c) mode 3. 

 

3.3 Time-step analysis with FE model 

 

In order to proceed this analysis, it was considered the same mesh adopted in the previous section (Fig. 3, 

uniform mesh and 40=q ). The basic idea of such analysis is to apply an impulse force at the endpoint of the FE 

mesh (the free node), i.e. impose a unitary force at this node only at the first step of time. Then it is registered the 

time vibration response of this node. This response is periodic and the FFT algorithm is used. The result of the 
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FFT is a frequency domain graphic, which the picks correspond to the resonance frequencies. These picks values 

can be related to the natural frequencies because no damping was considered in the FE model.  

 The analysis was made separately, considering the three situations showed in Fig. 2. In each analysis, a 

number of time steps N , a time interval t∆  and a unitary impulse to the required excitation (longitudinal, 

transverse and torsional). The results of time-step simulation and FFT are depicted in figures 7, 8 and 9. Table 3  

show the problem parameters and resonance frequencies obtained by graphical analysis. It was selected the 

Newmark parameters as 2121 == ββ . 

 

 
(a) (b) 

 

Figure 7. Longitudinal vibration using 2098=N  and st 510−=∆ : (a) endpoint response and  

(b) corresponding FFT. 

 

 

 
 

(a) (b) 

 

Figure 8. Transverse vibration using 2098=N  and st 5105 −⋅=∆ : (a) endpoint response and  

(b) corresponding FFT. 

 

 

 

 



 
 

(a) (b) 

 

Figure 9. Torsional vibration using 2098=N  and st 510−=∆ : (a) endpoint response and  

(b) corresponding FFT. 

 

Table 4. Resonance frequencies in the three chosen situations. 

 

Vibration type 
t∆  (s) 

Time step 

N  

Quantity of steps 

Frequencies by FFT 

picks (Hz) 

1
st
 1416 

2
nd

 4197 Longitudinal 5101 −⋅  2098 

3
rd

 6930 

1
st
 87.85 

2
nd

 536.9 Transverse 5105 −⋅  2098 

3
rd

 1464 

1
st
 878.5 

2
nd

 2587 Torsional 5101 −⋅  2098 

3
rd

 4344 

 

3.4 Analytical solution versus Natural frequencies and FFT results  

 

The results were compared with each other considering the analytical as a reference. This assessment can be 

numerically seen in table 5, that shows that the biggest relative difference is 4.31%, which corresponds to the 

transverse vibration. 

 

Table 5. Differences between the results. 

 

 
Relative difference in relation to analytical 

solution (%) 

Vibration type 
Modal analysis by FE 

analysis 

Time-step FE analysis 

and FFT 

1
st
 < 0.01 1

st
    0.96 

2
nd

    0.02 2
nd

    0.22 Longitudinal 

3
rd

    0.16 3
rd

    1.15 

1
st
    0.16 1

st
    0.79 

2
nd

    1.23 2
nd

    1.73 Transferse 

3
rd

    2.86 3
rd

    4.31 

1
st
 < 0.01 1

st
    1.03 

2
nd

    0.06 2
nd

    0.85 Torsional 

3
rd

    0.07 3
rd

    0.10 

 

4. CONCLUSION 

 

Considering the FE code produced, one can notice the beam theory and the mesh adopted (table 5) with the 

application of FFT over the Newmark scheme results provide results very close to the analytical solution 
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considering a cantilever beam. This set of choices and considerations composes a model able to simulate the 

simple considered situation. 

This code has been successfully used in this institution to simulate an hydrogenerator dynamic response 

considering any type of unbalancing. It is much more complex that the problem showed in this paper. Moreover 

there is no previous solution that can be used to comparison. However this work verified that this code is able to 

calculate a time-step evolution by FE method. To a complex problem such as hydrogenerator situations, the 

appropriate boundary and initial conditions has to be chosen together with the application of the unbalanced loads 

predicted by the magnetic theories.  
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