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Abstract. A solution based on the Generalized Integral Transform Technique (GITT) is obtained for laminar flow of 
Newtonian fluids inside annular ducts with rotation. The mathematical formulation is constructed based on the 
cylindrical coordinates system within the hypothesis of validation of the boundary layer equations in the entrance 
region of the annular channel. Numerical results for the velocity field were produced for different values of the 
governing parameters, i.e., aspect ratio and Taylor numbers. The results were confronted with previously reported 
ones, providing critical comparisons while illustrating the employed integral transform approach. 
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1. INTRODUCTION 
 

Laminar flow in ducts of annular geometry involving Newtonian fluids is frequently found in several engineering 
applications, such as those in industrial processing plants, mainly in heat exchange devices, cooling systems and tubular 
heat exchangers. For these applications, it is important the knowledge of information with respect to the velocity field 
of the fluid flow, which may provide an adequately design or a better operation of such equipment. In dealing with the 
geometric configuration used in the construction of thermo-hydraulic equipments, the annular geometry is still 
extensively studied due to its great applicability in industries. Among these one can mention the polymer extrusion in 
the petrochemical industry, the deposition of paraffin in pipes during the pumping of petroleum in the petroleum 
industry, to name a few. 

The literature survey for the flow in annular passages reveals an abundance of works, mainly due to its practical 
importance. Particularly, several authors have numerically studied the entrance region for the flow of a Newtonian fluid 
between two coaxial cylinders either with or without the rotation of the internal cylinder, and Coney and El-Shaarawi 
(1974, 1975) were one of the first researchers to conduct such analysis. In this same line of study, the fully developed 
flow and heat transfer of a non-Newtonian fluid that follows the rheological power-law model was analyzed by Batra 
and Sudarsan (1992) through the application of the finite element method for the solution of the governing equations. 
Later, these studies have again motivated interest in the works of Manglik and Fang (1995), Fang et al. (1999), Manglik 
and Fang (2002), Escudier et al. (2002) and Sayed-Ahmed and Sharaf-El-Din (2006) in which the effects of eccentricity 
and duct rotation were investigated for the flow and heat transfer of non-Newtonian fluids. In addition, the more recent 
work by Escudier et al. (2002) brings a detailed and up-to date literature review for flow and heat transfer in eccentric 
annular ducts involving Newtonian and non-Newtonian fluids. 

In searching for solution of such problems, the methodology of the Generalized Integral Transform Technique 
(GITT), with its hybrid analytical-numerical nature, has been advanced as an alternative tool for benchmarking 
purposes and covalidation of purely numerical techniques (Cotta, 1993 and 1994). Recently, this hybrid approach has 
also been employed in the flow and heat transfer of Newtonian and non-Newtonian fluids in annular ducts (Pereira et 
al., 1998; Pereira et al., 2002; Monteiro et al., 2004). 

In this context, the purpose of the present study is to solve the momentum equations for developing laminar flow in 
ducts with rotation of the inner wall by employing the GITT approach, and to establish reliable numerical results for the 
velocity field, for different values of the governing parameters. The present results are then confronted with previously 
reported ones, providing critical comparisons while illustrating the employed integral transform approach, and to assess 
the consistency of the final results, as well. 
 
 



2. ANALYSIS 
 

Laminar flow of a Newtonian fluid in an annular duct with rotation of the inner wall is considered as shown in  
Fig. 1. The continuity and incompressible steady Navier-Stokes equations in cylindrical coordinates are used to model 
the flow inside this annular geometry. The longitudinal velocity component vz is assumed to be known at the channel 
entrance, and the inlet flow is assumed to be parallel (vr = vθ = 0). Fully developed flow conditions are attained at a 
sufficiently large channel length, recovering the parabolic flow structure. Therefore, the governing equations within the 
hypothesis of the boundary layer, in the region γ < r < 1 and z > 0, are written in dimensionless form as: 
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Equations (1) to (4) are subjected to the following inlet and boundary conditions: 
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Figure 1. Geometry and coordinate system for developing annular flow with rotation of the inner wall. 
 

The dimensionless groups employed in the equations above are defined as 
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where Dh = 2r0(1 – γ) is the hydraulic diameter and γ is the aspect ratio. 

Now, in order to express Eqs. (1) to (5) in the streamfunction formulation, which automatically satisfies the 
continuity equation and eliminates the pressure field. Therefore, the streamfunction is defined in terms of the 
dimensionless velocity components in the radial (r) and longitudinal (z) directions, respectively, as 
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Taking the derivative of Eq. (2) with relation to the z variable and the derivative of Eq. (4) with relation to the r 

variable, the results are subtracted, after that the definitions given by Eqs. (7,8) are introduced in such result as well as 
in Eq. (3), to yield 
 

 
2

2 2
v v v v v v1 1 1

r z r z r r z r rr r
θ θ θ θ θ∂ ∂ ∂∂ψ ∂ψ ∂ψ

+ − = + −
∂ ∂ ∂ ∂ ∂ ∂∂ 2r

θ∂
 (9) 

 
3 2 2 2 4 3 2

2
3 2 2 2 4 3 2 2 3

v1 3 3 1 1 2 3 32 v
r z r r r r r r z z r rr r r r z r r r r r

θ
θ

⎛ ⎞ ⎛ ⎞ ∂∂ψ ∂ ψ ∂ ψ ∂ψ ∂ψ ∂ ψ ∂ ψ ∂ ψ ∂ ψ ∂ ψ ∂ψ
− + − − − ξ = − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ∂

 (10) 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

Equations (9) and (10) require the specification of boundary conditions expressed in terms of the streamfunction, 
which are written as: 
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Constants C1 and C2 specify the streamfunction values at the duct walls, and are related by using the boundary 
conditions above as C2 = C1 – (1 – γ2)/2. One may arbitrarily specify C1 = 0, so that C2 = – (1 – γ2)/2. 

Equations (9) and (10) and boundary conditions (11) complete the problem formulation in terms of the 
streamfunction and the tangential velocity component. Following the ideas in the generalized integral transform 
technique (Cotta, 1993; Cotta, 1994; Cotta, 1998; Santos et al., 2001; Cotta and Mikhailov, 2006), for improved 
computational performance, it is convenient to define filters that reproduce the fully developed flow solution in order to 
homogenize the boundary conditions in the r direction, which later will be the coordinate chosen for the specification of 
the eigenvalue problem. Therefore, the filters are written as 
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where the filters vθ,f(r) and ψ∞(r) ≡ ψ(∞,r) represent the tangential velocity for the situation of pure rotation flow and the 
streamfunction in the fully developed region, respectively, and vθ,F(r,z) and φ(r,z) are now the filtered potentials to be 
solved for. The resulting problem formulation is then given by: 
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2.1. Solution methodology 
 

In applying the GITT approach in the solution of the PDE system given by Eqs. (14), due to the homogeneous 
characteristics of the boundary conditions in the r direction, it is more appropriate to choose this direction for the 
process of integral transformation. Therefore, the following auxiliary eigenvalue problems are taken as (Pereira et al., 
1998): 
 
- For the potential φ(r,z): 
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Problem (15) is analytically solved and written on a normalized form for improved computational performance, to 

furnish: 
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Substituting Eq. (16a) into the boundary conditions given by Eqs. (15b-e) one leads to the following system of four 

algebraic equations: 
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The non-trivial solution of system (16b) requires: 

 
   (16d) Det( ) 0=P
 
which provides a transcendental equation for the computation of eigenvalues λi’s. The eigenfunctions given by Eqs. 
(16a) are evaluated by making A1 = 1 for convenience, and the remaining Ai’s are calculated from system (16b), for 
each eigenvalue λi. 

The eigenfunctions satisfy the following orthogonality property: 
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The normalization integral Mi is then computed from: 
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- For the potential vθ,F(r,z): 
 

 2i
i i2

dX (r)1 d 1r X
r dr dr r

⎛ ⎞⎡ ⎤ − − µ =⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
r 1γ < <(r) 0  in   (17a) 

   (17b,c) i iX ( ) 0;   X (1) 0γ = =
 

Similarly, problem (17) is analytically solved, to furnish the eigenfunctions, transcendental equation to compute the 
eigenvalues, orthogonality property and normalization integral, respectively, as 
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The eigenvalue problems defined by Eqs. (15) to (18) allow for the definition of the following integral transform 

pairs: 
 
- For the streamfunction field: 
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- For the tangential velocity component: 
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where  and are the normalized eigenfunctions. 1/ 2
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The next step is thus to accomplish the integral transformation of the original partial differential system given by 
Eqs. (14). For this purpose, Eq. (14a) and the inlet condition (14c) are multiplied by [rΩi(r)], integrated over the domain 
[γ,1] in r, and the inverse formula given by Eq. (19b) is employed. Similarly, Eq. (14b) and the inlet condition (14d) are 
multiplied by [rXi(r)], also integrated over the domain [γ,1] in the r-direction, and the inverse formulae given by Eqs. 
(19b) and (20b) are employed. After the appropriate manipulations, the following coupled ordinary differential system 
results, for the calculation of the transformed potentials i (z)φ  and ,iv (z)θ : 
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In order to numerically handle the ODE system given by Eqs. (21) through the subroutine DIVPAG of the IMSL 
Library (1991), it is necessary to truncate the infinite series in a sufficiently high number of terms (NSF and NTV for 
the streamfunction and tangential velocity, respectively) so as to guarantee the requested relative error in obtaining the 
original potentials. This subroutine solves initial value problems with stiff behavior, and provides the important feature 
of automatically controlling the relative error in the solution of the ordinary differential equations system, allowing the 
user to establish error targets for the transformed potentials. 
 Once the transformed potentials i (z)φ  and ,iv (z)θ  are available, the radial and longitudinal velocity 
components are obtained from the definition of the streamfunction given by Eqs. (7) and (8), after introducing the 
inverse formula (19b), as well as the tangential velocity component is computed from Eq. (12a), after introducing the 
inverse formula (20b), to yield: 
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3. RESULTS AND DISCUSSION 
 

Numerical results for the streamfunction filed and velocity components were produced along the entrance region of 
annular channel, within the governing parameters, i.e., aspect ratios γ = 0.2 and 0.5, and Rt = Re2/Ta = 1. The 
computational code was developed in FORTRAN 90/95 programming language and implemented on a PENTIUM-IV 
1.3 GHz computer. The routine DIVPAG from the IMSL Library (1991) was used to numerically handle the truncated 
version of the system of ordinary differential equations (Eqs. (21)), with a relative error target of 10-8 prescribed by the 
user, for the transformed potentials. Also, the results were produced with different truncation orders NT = NST = NTV 
≤ 60 for γ = 0.2 and N = NST = NTV ≤ 100 for γ = 0.5. 

First, Tabs. 1 and 2 brings the convergence behavior of the streamfunction at different radial positions of the annular 
duct and for Z = 0.003 and Z = 0.030. It can be observed the excellent convergence rates for the two aspect ratios 
analyzed. In an overall analysis at least four significant digits are fully converged in both cases studied. 
 

Table 1. Convergence behavior of the streamfunction at different axial positions for Rt = Re2/Ta = 1 and γ = 0.2. 
ψ(r,z) for Rt = Re2/Ta = 1, γ = 0.2 

NT = 10 NT = 20 NT = 40 NT = 60 r 

Z = 0.003 Z = 0.030 Z = 0.003 Z = 0.030 Z = 0.003 Z = 0.030 Z = 0.003 Z = 0.030 
0.20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.25 -0.005213 -0.003913 -0.005176 -0.003914 -0.005154 -0.003915 -0.005146 -0.003915 
0.30 -0.017104 -0.013795 -0.017053 -0.013806 -0.016997 -0.013808 -0.016977 -0.013809 
0.35 -0.034244 -0.029815 -0.034232 -0.029838 -0.034170 -0.029845 -0.034145 -0.029846 
0.40 -0.058930 -0.055993 -0.059094 -0.056040 -0.059091 -0.056054 -0.059079 -0.056057 
0.45 -0.083268 -0.084387 -0.083655 -0.084462 -0.083750 -0.084486 -0.083762 -0.084491 
0.50 -0.110280 -0.117690 -0.110970 -0.117800 -0.111190 -0.117830 -0.111230 -0.117840 
0.55 -0.145160 -0.161810 -0.146260 -0.161950 -0.146660 -0.162000 -0.146750 -0.162010 
0.60 -0.177950 -0.203170 -0.179450 -0.203340 -0.180020 -0.203400 -0.180150 -0.203420 
0.65 -0.213430 -0.246740 -0.215360 -0.246920 -0.216110 -0.246990 -0.222580 -0.247000 
0.70 -0.258260 -0.298660 -0.260700 -0.298840 -0.261670 -0.298910 -0.261910 -0.298920 
0.75 -0.299690 -0.342400 -0.302490 -0.342560 -0.303620 -0.342620 -0.303890 -0.342630 
0.80 -0.343770 -0.383560 -0.346630 -0.383690 -0.347820 -0.383740 -0.348110 -0.383750 
0.85 -0.396690 -0.425660 -0.398930 -0.425740 -0.399900 -0.425770 -0.400150 -0.425780 
0.90 -0.438230 -0.454140 -0.439460 -0.454180 -0.440030 -0.454200 -0.440170 -0.454200 
0.95 -0.468480 -0.473100 -0.468830 -0.473110 -0.469000 -0.473110 -0.469040 -0.473110 
1.00 -0.480000 -0.480000 -0.480000 -0.480000 -0.480000 -0.480000 -0.480000 -0.480000 

 
Table 2. Convergence behavior of the streamfunction at different axial positions for Rt = Re2/Ta = 1 and γ = 0.5. 

ψ(r,z) for Rt = Re2/Ta = 1, γ = 0.5 
NT = 10 NT=20 NT=40 NT=60 NT=100 r 

Z = 0.003 Z = 0.030 Z = 0.003 Z = 0.030 Z = 0.003 Z = 0.030 Z = 0.003 Z = 0.030 Z = 0.003 Z = 0.030
0.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.55 -0.012424 -0.010378 -0.012379 -0.010378 -0.012352 -0.010379 -0.012344 -0.010379 -0.012339 -0.010379
0.60 -0.040649 -0.036204 -0.040564 -0.036206 -0.040508 -0.036206 -0.040490 -0.036206 -0.040479 -0.036207
0.65 -0.078677 -0.074862 -0.078684 -0.074865 -0.078653 -0.074866 -0.078640 -0.074866 -0.078631 -0.074866
0.70 -0.122260 -0.123120 -0.122510 -0.123120 -0.122570 -0.123130 -0.122580 -0.123130 -0.122580 -0.123130
0.75 -0.169560 -0.177290 -0.170120 -0.177290 -0.170310 -0.177290 -0.170350 -0.177290 -0.170370 -0.177290
0.80 -0.220000 -0.233210 -0.220810 -0.233220 -0.221110 -0.233220 -0.221170 -0.233220 -0.221210 -0.233220
0.85 -0.272290 -0.286300 -0.273140 -0.286300 -0.273450 -0.286300 -0.273530 -0.286300 -0.273570 -0.286300
0.90 -0.321940 -0.331430 -0.322510 -0.331430 -0.322730 -0.331430 -0.322790 -0.331430 -0.322820 -0.331430
0.95 -0.359910 -0.363030 -0.360100 -0.365220 -0.360170 -0.363030 -0.360190 -0.363030 -0.360200 -0.363030
1.00 -0.375000 -0.375000 -0.375000 -0.375000 -0.375000 -0.375000 -0.375000 -0.375000 -0.375000 -0.375000



Figures 2 and 3 show the convergence behavior of the vz velocity component at Z = 0.002, for γ = 0.2 and 0.5, and 
Rt = Re2/Ta = 1, respectively with different truncations orders NT. It is observed an excellent graphical convergence 
and a good agreement with the results of Sayed-Ahmed and Sharaf-El-Din (2006). Also, one can see that as the aspect 
ratio increases the velocity profile tends to be symmetrical. 
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           Figure 2. Velocity profile vz for γ = 0.2 at Z = 0.002.          Figure 3. Velocity profile vz for γ = 0.5 at Z = 0.002. 
 
 

Similar analysis is shown in Figs. 4 and 5 for the convergence behavior of the vr velocity component. Also, it is 
observed an excellent graphical convergence, but only a poor agreement with those results of Sayed-Ahmed and Sharaf-
El-Din (2006). This, difference among the results can be attributed to the numerical scheme employed for these authors. 
In their works, it is not given any mention about the mesh analysis in order to find fully converged results. 
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              Figure 4. Velocity profile vr for γ = 0.2 at Z = 0.002.        Figure 5. Velocity profile vr for γ = 0.5 at Z = 0.002. 
 

Finally, in Figs. 6 and 7 is shown the convergence behavior of the vθ velocity component with the same governing 
parameters adopted in the above analysis. For this velocity component, the convergence rate is faster, as can be seen 
that lower truncations orders are needed to achieve fully converged graphical results. Also, an excellent agreement is 
found with the results of Sayed-Ahmed and Sharaf-El-Din (2006). In addition, the tangential velocity decreases from 
one to zero, at the inner to the outer wall of the channel, respectively, and for lower aspect ratio the tangential velocity 
gradient is stepper than for higher ones. 
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              Figure 6. Velocity profile vθ for γ = 0.2 at Z = 0.002.        Figure 7. Velocity profile vθ for γ = 0.5 at Z = 0.002. 
 
 
4. CONCLUSIONS 
 

The Generalized Integral Transform Technique (GITT) was further extended towards the hybrid numerical-
analytical solution of developing laminar flow in annular ducts with rotation of the inner wall, here modeled by the 
boundary layer equations in cylindrical coordinates, with the employment of the streamfunction formulation. Numerical 
results for the streamfunction and the velocity components thus produced. The excellent agreement of the present 
results with previously reported ones demonstrates the consistency of this approach and adequacy for benchmarking 
such class of problems. An only reasonable agreement of the present converged results with those of Sayed-Ahmed and 
Sharaf-El-Din (2006) for the radial velocity component is attributed to the numerical scheme adopted by the above 
referred authors, which was not capable to generate fully converged results for this problem. 
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