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Abstract. The technology of the gas-solid fluidized-bed gasifier can be developed to convert solid fuel in to electric 
energy through the gasification process. The gas-solid fluidized-bed analyzed in this work involves ascending air-steam 
phases and a descending solid fuel. The mathematical modeling developed for this process is composed of energy 
balance equations and of the balance equations of the chemical species. This equation set forms a coupled partial 
differential equation (PDEs) system. The solution of this equation system was accomplished with the algorithm of the 
method of lines. The PDEs system was transformed in to a coupled ordinary differential equation (ODEs) system. The 
ODEs system was solved with the implementation of the Runge-Kutta Gill method, using a computer program 
developed in Fortran 90 language. The numeric experiments were analyzed through temperatures profiles, as well as 
profiles of the chemical species that compose the gasification process in the fluidized-bed gasifier. The numeric 
experiments were validated with experimental data to test the precision, convergence and stability. 
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1. INTRODUCTION 

The strategic politics of the Brazilian electric sector foresees an amplification of the electric energy production from 
renewable sources. However, the electric energy production from the gasification of biomassing solid wastes is a 
promising alternative technology for this sector. This technology involves an integration process, fluidized-bed gasifier 
(FBG)/gas turbine (GT), which can be configured by a simple integration, that is, hardly a GT integrated to FBG or 
through combined cycle (Brayton/Rankine) that includes the integration of a GT and a steam turbine (ST) integrated to 
FBG (Gabra et al., 2001a, b, c). 

The technology of the biomass gasification in a FBG needs of the detailed knowledge of the physical and chemical 
phenomenon to optimize the energy efficiency in the gasifier. However, the mathematical models are important tools to 
investigate these physical and chemical phenomenon that happen in the FBG. Usually, The mathematical models are 
composed by moment, energy and mass balance equations. In the present work, it was just studied the energy and mass 
balance equations. 

The FBG for a simple cycle plant or for a combined cycle plant is equipment with complex operation. Therefore, the 
operational control of the gasification reactions is difficult task. The referring mass balance equations to each 
component (reagents and products) of the gasification process compose the mathematical modelling for the FBG. The 
mathematical modelling developed for the FBG was used to simulate the behavior of the components of the gasification 
reactions, as well as the thermal behavior in the FBG. 

The energy and mass balance equations developed for the gasification process form a coupled partial differential 
equation (PDEs) system. The numerical solution of this PDEs system was accomplished with implementation of Runge-
Kutta Gill method (Silva et al, 2002a, 2004b). 

The cane bagasse is a promising solid fuel for the power generation system in FBG with high efficiency and at low 
cost (Gabra et al., 2001, Bridgewater, 1995). Before the gasification process to be accomplished, the cane bagasse 
suffers a pre-treatment as the following steps: (i) the cane bagasse is briquetted; (ii) drying to evaporate moisture; (iii) it 
should be heated up to 300oC-500oC. 

The gasification process involves the solid fuel entrance in the top of the FBG and the air and steam entrance in the 
base of the FBG. In the gasification zone happens homogeneous and heterogeneous reactions. 

C + O2 ⇔ CO2                (I) 
C + H2O ⇔ CO + H2              (II) 
CO + H2O ⇔ CO2 + H2            (III) 
C + CO2 ⇔ 2 CO            (IV) 
 
Therefore, the objective of this work is to analyze the behavior of the resulting components (C, CO, O2, H2, CO2, H2O) 
of the gasification process through the modelling and simulation. 
 
2. DEVELOPMENT OF THE PHYSICAL MODELLING FOR THE GASIFICATION PROCESS 

Usually, fluidized-bed gasifier (FBG) is divided in two zones: (i) a fluid-solid fluidization zone; (ii) a solid free zone 
(Freeboard). The mathematical modelling developed for this work was just restricted to fluid-solid fluidization zone. In 
this zone, it will happen the combustion and gasification reactions. The Figure 1 shows a prototype simplified of the 
FBG that will be used for the simulation of this work. 
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Figure 1: model simplified of a fluidized-bed gasifier (FBG) for the electric energy production 

In the Figure 1 was shown a prototype of a FBG, it served as tool to accomplish the numeric experiments presented 
in the present work for the gasification process. The mathematical model developed for this work was formulated with 
relation to temperatures of the gaseous and solid phases with relation to components O2, CO, CO2, H2O, H2 and C. The 
development of this modelling is subject the following simplifying hypotheses: (i) nonisothermal system with energy 
balance for the gaseous and solid phases one-dimensional; (ii) temperatures of the gaseous and solid phases are modeled 
as models of thermal axial dispersion; (iii) the mathematical models for the components O2, CO, CO2, H2O, H2 and C 
are one-dimensional pseudohomogeneous. Based on these hypotheses, the EDPs system formed by the energy and mass 
balances is expressed as: 

• Energy balance for the gaseous phase; 
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• Energy balance for the solid phase; 
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• Balances for the gaseous species O2, CO, CO , H O and H2. 2 2
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• Initial and boundary conditions; 
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The C that appears in the heterogeneous chemical reactions is given in function of the burns rate of the individual C 
particles (Basu, 1999). 
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• Initial and boundary conditions; 
0Y 0tC ==              (14) 
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3. MATHEMATICAL MODELLING FOR THE KINETICS 

The chemical equation system presented by the I to IV reactions couples one homogeneous reaction and three 
heterogeneous reactions. The I, II and IV reactions were classified as heterogeneous reactions, while the III reaction 
was classified as homogeneous. In the Table 1, the corresponding rates for each one of these reactions were presented: 

Table-1: Kinetic rates for the I, II, III and IV reactions, References 
Reactions Rates References 
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The total rates of each component for consumption and production can be obtained using the following equation 

(Xiu et al, 2002). 
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where νij is the stoichiometric coefficient of the component i in the reaction j. The νij is negative for the reagent 
component. On the other hand, the νij is positive for the product component. Therefore, the total rate for each 
component was found as: 
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The molar fraction of carbon that appears in the reactions I, II and IV is calculated with relation the combustion of 
the individual particles of carbon (Basu, 1999). The rate of carbon (RC) of Equation (29) was given by shrinking 
unreacted model (Levenspiel, 1984). The rate for this model was given by Basu and Fraser (1991) as: 
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4. NUMERIC METHODOLOGY FOR THE MODEL 

Equations of the model together with the total rates for the consumption and formation components form a 
coupled nonlinear EDPs system, which characterize an initial and boundary value problem. The PDEs system was 
transformed in a coupled ordinary differential equation (ODEs) system with implementation of the difference method 
finite to discrete the spatial derivates. 
• discreting energy balance for the gaseous phase; 
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• discreting initial and boundary conditions; 
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• discreting energy balance for the solid phase; 
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• discreting initial and boundary conditions; 
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• discreting mass balance for the gaseous species O2, CO, CO2, H2O and H2; 
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• discreting initial and boundary conditions; 
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• iscreting mass balance for C; d
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The parameters α1; α2; β1; β2; β3; β4 and the initial conditions are presented in the Table A1 of the Appendix A. 

5. RESULTS AND DISCUSSIONS 
Equations (24)-(39) were solved with application of the Runge-Kutta Gill method (Rice and Do, 1995). In 

sequence, it was developed a program in the Fortran 90 language to delimit Tg, TS, YO2, YCO, YCO2, YH2O and YC. The 
program was fed with the numerical values of the Table 2. 

Table 2: data used in the simulation 
Correlation References 
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Tabela 2 – Parâmetros Complementares para a simulação (Fan et al., 2003) 
Parâmetros Valores Parâmetros Valores Parâmetros Valores 

ds 183,356 Cp,g 1,77x103 g 9,98 

ρs 2530 CP,s 4,02x103 As 150 

ρg 24 P 2,1x106 R 8,314 

µg 1,14x10-5 Vg 0,20 H 0,5 

λg,eff 2,49x10-2 ∆Hj 3,835x106 λs,eff 3,76x10-1 

Tg,0 500oC Ts,0 600oC Pg 2,1x106 

The behaviour of variables Tg, TS, YO2, YCO, YCO2, YH2O and YC was shown in Figures (2), (3), (4), (5) and (6). 

 
Figure 2: Temperature profiles of the gas phase for five different drainage at the entrance of gasifier 

 

 
Figure 3: Temperature profiles of the solid phase for five different drainage at the entrance of gasifier. 
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Figure 4: Behaviour of the molar fraction of components O2, CO, CO2, H2 and H2O. 

 

 
Figure 5: Behaviour of the molar fraction of the component C for five different drainage of the solid phase 

 
Figures (2) and (3) shown the dynamic profiles of temperatures of the gas and solid phases at exit of the fluid-

solid fluidization zone. It verified a substantial increase of temperatures Tg and Ts with the decrease of the gas and solid 
drainages at the entrance of gasifier. The Figure 2 shown that the temperature of gas reaches the stationary state in t = ± 
60s for a gas drainage, Qg,0 = 20x10-4 m3 s-1, reaching a temperature of ± 1200oC. The Figure (4) shows the behaviour of 
the reagent and product components of the gasification process. In Figure (5), it was analyzed the behaviour of the 
carbon component for five solid drainage. On the other hand, the Figure (6) shown a validation case. 
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Figure 6: Validation of a numerical case with results of the literature 
 
6. CONCLUSIONS 
 

The forecasts of the behavior of temperatures of the gaseous phase and of the solid phase, as well as of the 
components O2, CO, CO2, H2O, H2 and C were shown in this work. For such end, it developed a mathematical model 
for variable Tg, Ts, YO2, YCO, YCO2, YH2O, YH2 and YC. The simulation of the mathematical model supplied the behavior 
of these you varied, driving the following conclusions: 
• The developed model allowed to analyze the sensibility of variable Tg with different drainage of entrance of the 

gas (Qar,0), as well as it allowed to verify the sensibility of variable Ts with different drainage of entrance Fs,0. 
• The vazões Qar,0 and Fs,0 of entrance presented strong influence on variable Tg, Ts, YO2, YCO, YCO2 and YC, 

should be consumed in the control of LF. 
 
NOMENCLATURE 
 
As Gasifier cross area, m2 
Cp, g Gas heat capacity, J/K mol 
Cp, s Solid heat capacity, J/K mol 
Di,eff Effective diffusion coefficient, m2/s 
Fs Mass flux of solid, kg/s 
hgs Gas-solid transfer coefficient of solid, W/m2 K 
∆Hr Entalpy of reaction, kJ/mol 
Qg Total volumeter flow rate, m3/s 
Ri Reaction rates for the component, i = O2, CO, CO2, H2O and H2, s-1 
t time, s-1 
Tg Gas temperature, K 
Ts Solid temperature, K 
Yc Molar fraction of carbon, dimensionless 
Yi Molar fraction for the component i = O2, CO, CO2, H2O and H2, dimensionless 
 
Greek Letters 
 
εg Volume fraction of gas, dimensionless 
εs Bed porosity, dimensionless 
ρg Gas density, kg/m3 

ρs solid density, kg/m3 
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λg,eff Effective heat conductivity of gas, J/m s K 
λs,eff Effective heat conductivity of solid, J/m s K 
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APPENDIX-A 
Table A1: Entrance and Parameter variables α1, α2, β1, β2, β3 e β4 
( ) g,ent0zg TtT =−=
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