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Abstract. The purpose of this work is to study the roll waves generation in hyperconcentrated fluids flowing in a 
sloping canal. Whith the expectation of predicting a mathematical model generating roll waves, this article presents a 
mathematical model based on Navier-Stokes equations integrated in vertical, including the Herschel-Bulkley 
rheological model in the tension tensor. An analysis of linear stability is made and a analytical theory of permanent 
roll waves is imployed to determine under what flow conditions roll waves can exist. Moreover, a roll wave equation is 
established and a numerical analysis verifies the generation of such instabilities. 
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1. INTRODUCTION  
 

The flows that occur on inclined channel with a resistance due to friction, can develop instabilities in hydraulic jump 
form or bore waves. Those instabilities can appear in both Newtonian fluids (clear water) and non Newtonian fluids 
(hyperconcentrated fluids). Such disturbances, with constant wavelength, are traveling waves, particularly called roll 
waves. Some what rare in natural flows, those waves appear more frequently in artificial canals and spillways of dams. 

In 1925, Jeffreys was the first to establish a criterion about the Roll Waves formation from a linear stability analysis. 
He inferred that the uniform flow made it self unstable if the Froude number was superior to 2. Dressler (1949) carried 
out an analysis based on the Saint Venant formulation without diffusion terms, combined with bore wave equation. 
However, his syntetically and correct analysis does not permit to establish the length of these waves. 

A first theoretical attempt consisted in an approximation of shallow water equations with roll waves diffusion, 
allowing us to define stability and production standards (Maciel et al., 1997). 

As regards the roll waves formation in hyperconcentrated fluids, several studies were done, although what appears 
more often in the literature is the study of roll waves generated in Bingham’s fluids (Liu and Mei, 1994), (Maciel, 
1998), (Noble, 2004). 

Roll waves formation was undertaken by (Ng and Mei, 1994), starting from a rheological proposal of fluids with 
pseudoplastic behavior (power law), carry out an analiytical investigation by seeking roll waves solutions characterized 
as periodic shocks connected by smoothly increasing depth profiles. Pascal (2005) investigate the generation and 
structure of roll waves developing on the surface of a power-law fluid layer flowing down a porous incline. 

In the present paper we consider a non Newtonian fluid flowing down an incline, using the Herschel-Bulkley 
rheological model. In parallel, an experimental study has been performed by team, where mixtures of water+clay and 
water+fine sand+clay are prepared and rheometry tests are realized. Based on (Coussot, 1992) studies, (Piau, 1996), 
(Huang and Garcia, 1998), (Lledo, 2003) and (Kiryu, 2003), it’s proves that those fluids rheology (considering the 
sedimentation/ressuspension phenomena) could be describe through the nonlinear rheological model like Herschel-
Bulkley, in simple laminar shear and steady regime. In the sequence those mixtures flow on a long platform with 10m 
length, producing, in some situations, roll waves. 
 
2. GOVERNING EQUATIONS 
  

Considering the two-dimensional laminar flow and using the Herschel-Bulkley rheological model, a coordinate 
system (x,z) is defined as the x-axis downslope along and the z-axis upward normal to the plane bed. The equations of 
motion for the layer are obtained from the Navier-Stokes equations, including the Herschel-Bulkley rheological model 
in the tension tensor, given by: 
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where cτ is the yield stress, n is the flow index and nK  is the dynamic viscosity. 
 The longitudinal and vertical velocity components are denote by ( )wu, , the pressure by P, and the total flow depth 
normal to be bed by h. The characteristic flow length and the flow depth changes relatively slowly in the longitudinal 
direction. Then the flow is governed by equations 
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where ρ is the fluid density and g is the gravitational acceleration.  

The  stress condition at the surface is given by 
 
 P, 0=τ               at     hz =                                                                                                                                      (2.5) 
 

The Kinematic condition at the surface is given by 
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 While at the bottom we have 
 
 0== wu            at     0=z                                                                                                                                       (2.7) 
  
 Integrating Eq. (2.4) and using the boundary condition (2.5) we find the expression for the pressure to be: 
  
 ( )hzgP −−= θρ cos                                                                                                                                                  (2.8) 
 
 Inserting (2.8) into (2.3), the momentum equation reads 
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 The limiting velocity profile for a steady uniform flow is obtainable from equation: 
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 The flow can be divided into a plug layer having velocity ( )0zuu =  on top of a shear layer in which u increases 
from zero to ( )0zu . 
 
 ( ) hzzzuu ≤≤= 00                                                                                  (2.11) 
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where 
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 Considering following the dimensionless variables, 
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 The velocity profile is verified through numerical resolution. 
 

 
Figure 1.Velocity profiles for different values of n 

 
  Profiles of velocity in fig.1, show a plug layer on top of a shear layer, as shown by (Huang, 1998). 
  The depth-averaged velocity is given by 
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 Integrating (2.2) and (2.8) with respect to 0  to h, using the Leibniz and applying the boundary conditions (2.6) and 
(2.7), we get 
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 The velocity distribution coefficient is given by 
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in which 
 
h  : flow depth; 
u : average vertical velocity; 
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cτ : yield stress; 
θ  : canal declivity; 
ρ : fluid density; 

nK : consistency index ; 
:n flow index. 

 
 Substituting (2.16) into (2.1) and setting 0=z , the bottom stress follows 
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 The equations (2.17) and (2.18) constitute the governing equations for laminar flows following the Herschel-Bulkley 
model. 
 
3. DIMENSIONLESS VARIABLES 
 
 To investigate the relative magnitude of the terms in these equations, dimensionless variables are introduced by 
using a number of scales as follows: 
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 The index ( )0  represents the uniform draining conditions and asterisk ( )*  the dimensionless variables, in which 
 

0h  the length scale in z and 0l  is the length scale in x given by 
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 We define a characteristic bottom stress in terms of 0h  and 0u , it follows: 
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 Introducing these dimensionless variables in equations (2.17)-(2.18) and omitting the asterisks, the system is 
obtained, after some mathematical developments. 
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where 
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4. LINEAR STABILITY ANALYSIS 
 
 To establish a stability analysis a small disturbance will be added to the equations (3.5)and (3.6) as follows: 
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 ( )t,xV1u +=                                                                                                                                                             (4.2) 
 
 Considering 1V,H << , through of a process of linearizing of the system, the linearized equations can be combined 
to produce the following equation in H : 
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 Considering a normal mode for the disturbances 
 
 ( )tkxieĤH ω−=                                                                                                                                                            (4.4) 
 
in which k is the wavenumber, and ir iωωω +=  is complex.. For the dispersion equation we obtain: 
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 Solving this equation we have: 
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 Considering 1n0 ≤< , 2.10 ≤< α , we have 0b >  for 0k ≠ , we obtain: 
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 If ( ) 0I <ω , therefore ( )−ωI  it tends to decay and stability. Then ( ) 0I >ω  if and only if 
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 Substituting (3.9) into (4.11), the flow will be unstable if 
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 The figure 2 shows the growth rate of disturbance as a function of k and α  for 2.0n =  and 4.0n = , respectively, 
for some values of β .  
 

  

Figure 2: Growth rate of disturbance. 
 
 The figure 3 shows the phase velocity of disturbance as a function of k and α  for 2.0n =  and 4.0n = , 
respectively, for some values of β . 
 

  
Figure 3.Phase velocity of disturbance. 

 
 The threshold of instability nβ  depends only on n. The neutral stability curves are given the two lines 0k =  and 

nββ = . If the yield stress will be null, the determined results has compared very well with that found in (Ng and Mei, 
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1994), when it used the rheological model of the type to power law. For Newtonian fluid the instability criterion 
becomes 3<β  and the phase velocity is 3. This has been obtained by (Prokopiou et al, 1991) and (Ng and Mei 1994). 
 
5. EQUATION OF THE ROLL WAVE 
 
 In order to analyses the almost permanent study of the system, we make a variable change : Utxz −= , in which U 
is the uniform propagation velocity of a roll wave. With that, and applying a variable change (3.5) and (3.6) equations, 
it is obtained: 
 
 Mass Conservation 
 
 ( ) UUuh −=− 1                                                                                                                                                        (5.1) 
 
 Momentum equation 
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 Replacing (4.13) in (4.14) and cutting the variable u, we have a first order differencial equation in the variable h: 
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therefore 
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 When the yield stress will be null, that is, for a rheological proposal of fluids with pseudoplastic behavior (power 
law), the obtained equations are in accord with the equations found by (Ng and Mei 1994). 
 
5.1 Shock conditions 
 
 The wavelength of the roll wave it can be defined of the following form 
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where 1h is the depth before of the shock, 2h is the depth after of the shock and h  the average depth of the roll wave 
profile given by 
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 The shock conditions are derived from the conservation laws of mass and momentum in (3.5) and (3.6) 
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Solving for 2h , with 0>β , follows: 
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 For 0=β : 
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6. NUMERICAL RESULTS 
 
 The resolution of the eq. (5.3) it was obtained through a developed of a rountine calculation, using the 
computational packet Python, showing the profile of the roll wave. Figure 5, shows the profile of the roll waves for 

4.0n = , 1=β  and 18.2=U , varying the value of  *C . 
 
 

  
          Figure5.a. Numerical results for 4.0n = , 1=β , 

18.2=U  and 1.0C* = . 

                   Figure5.a. Numerical results for 
4.0n = , 1=β , 18.2=U  and 4.0* =C . 

Figure 5. Profile of the roll waves varying the parameter *C . 
 
 Based in fig. 5, we can observe that an increase of parameter *C , cause an increase in the amplitude and a decrease 
in the amplitude and decrease in the wavelength generated.  

The figure 6, shows the profile of the roll waves for 4.0=n , 1.0* =C  and 1=β , varying the value of  propagation 
velocity ( )U . 
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         Figure 6.a. Numerical results for 4.0n = , 1=β ,  

1.0C* =  and 17.2=U . 
         Figure 6.a. Numerical results for 4.0n = , 1=β ,  

1.0C* =  and 18.2=U . 
Figure 6. Profile of the roll waves varying the propagation velocity ( )U  

 
 Fixing the values of β , n , *C  and increasing the propagation velocity )(U , we observe a decrease of the amplitude 
and small variation of the wavelength. 

The fig. 6, shows the profile of the roll waves for 4.0n = , 1.0* =C  and 38.3=U , varying the value of  parameter 
β . 

  
         Figure 7.a. Numerical results for 4.0n = , 1.0C* = ,  

38.3=U  and 1=β . 
           Figure 7.b. Numerical results for 4.0n = , 

1.0C* = ,  38.3=U  and 5=β . 
Figure 7. Profile of the roll waves varying the parameter β . 

 
It is observed that increasing the value of parameter β , occurs a significant decrease in the wavelength and a 

increase in the amplitude of the wave.  
 

7. CONCLUSIONS 
  

 It was presented in this article a mathematical model to roll waves generation in hyperconcentrated fluids flowing in 
a sloping canal, including the Herschel-Bulkley rheological model. 

An analysis of linear stability was made, showing the conditions of stability of the system. Through the numerical 
results, we can observe the appearance of roll waves stabilized for nββ < . 

Using an analytical permanent roll waves theory we determined flow conditions under which roll waves solutions 
are possible. The method determines a mathematical model generating roll waves and e a numerical analysis shows the 
evolution of such instabilities. These roll waves patterns are in agreement with those predicted by (Ng and Mei, 1994) 
study. 
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