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Abstract : This paper addresses the problem of reorienting a rigid spacecraft from arbitrary initial condition to a 

prescribed final condition under control and slew rate constraint in a circular orbit. The rest-to-rest reorientation 

of the spacecraft is accomplished using three reaction wheels with independent three axis control. The control law 

proposed is based on a non linear quaternion feedback theory applied to a rigid body in translation and rotation 

movement. 

 

1. Introduction 

 

The attitude control of a spacecraft has been subject of much consideration in the recent years. In this case the 

precision points control; rapid multi target acquisition and tracking capabilities are indispensable requirements. 

Numerous studies have been conducted for different spacecraft configuration as 1) complete rigid 2) a combination 

of rigid and flexible parts, or gyrostat-type systems. In this paper quaternions feedback control logic with control 

and slew rate constraints are considered. A brief overview of the three axes attitude orientation is shown in a way to 

establish a parallel with the results presented on this paper. In Feiyue and Bainum (1988) an optimal control theory 

was applied to the slewing motion of a general rigid spacecraft. Jan and Chiou (2003) developed an algorithm of 

minimum time in order to provide a robust tracking control. Wie and Weiss (1989) presented a linear quaternions 

feedback regulator with open-loop decoupling control torque for gyroscope forces to ensure eigenaxis rotations. 

Wie and Jianbo (1995) proposed a globally stable quaternions feedback control law. 

2. Eigenaxis Rotation Methods 

 

In this section three main methods will be showed;  Euler, Direction Cosine and Quaternion method, which are 

used to describe the rotation motion of a rigid body around its body-fixed axes with origin at its center of mass. 

Using one of the methods showed, the rigid body attitude can be changed from any given orientation to any other 

orientation by rotating the body around an axis called Euler axis or eigenaxis. A relationship between the rigid 

body rotations about the orbital axes is derived and it will be the base to establish a set of kinematics differential 

equation of motion. 

 

2.1 Euler Method 
 

The Euler attitude angles represent the most common method to describe the spatial orientation of a rigid body 

(Wie and Jianbo, 1995). The rigid body axis is inicially aligned with the inertial reference axis; the Euler angles are 

specified by three successive rotations to bring the inertial reference coordinates into alignment with the rigid body 

axis; twelve different rotations are possible. In this work the following sequence was used: the first rotation about 

the z-axis ( Ψ ), then about the y-axis ( θ ) and finally rotation about the x-axis ( φ ).  

 

The Euler angles have the following ranges: 
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There is a direct relation between the Euler attitude angles and the angular velocity of the rigid body axis. From this 

relationship the kinematics differential equation can be derived: 
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The above equation can be rewritten as, 
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where, 

 

),,( rqp  are the rigid body axis components of the angular velocity of the body with respect to inertial axes, and 

( , , )ψ φ θ  are the Euler angles of the body axis with respect to the orbital fixed reference frame that rotates with 

the orbital angular velocity n. 

 

2.2 Direction Cosines Method 

 

The direction cosines method is useful to represent the transformation between two different coordinates. Using the 

direction cosines, the body axis coordinates can be transformed into to the inertial reference frame and vice versa 

by a matrixial operation. The direction cosines matrix that represents the transformation from body axis to the 

inertial reference axis, according to Wertz, 1978, is expressed by: 
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where, 
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2.3 Quaternion Method 

 

Nevertheless, the Euler method to be frequently used to describe the kinematics of the rigid body and showing as 

the biggest advantages in the face of other methods its physical interpretation, this method has a singular point that 

happen when the pitch angle, θ , goes through the vertical 
2

θ
± .  This problem was settled when Sir Willian 

Hamilton developed quaternion algebra in 1843, after long researches on the hyper complex numbers (Tasora and 

Righttini, 1999). Since then quaternions have been widely used in Dynamics modelling because they can easily 

represent rotations of reference frames in space as soon as a correspondence between them and the Euler angles. 

The quaternions are four-dimensional hypercomplex vector, with one real and three imaginary components: 
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were, 
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In the rigid body orientation the first three components indicates the direction of the Euler axis. The scalar part of 

the quaternions, the fourth component, is related to the rotation angle about the Euler axis. In this work the 

quaternion will be written in the vectorial form: 
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Using the notation referred above some property of the quaternions shall be showed: 

The Euclidian Norm of the quaternion q is defined as 2
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The product between two quaternions are given by the following equation 
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The four elements of quaternions are defined as 
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Whereϑ , is the magnitude of the Euler axis rotation, and ),,( 321 ccc  are the direction cosines of the Euler axis 

relative to reference frames. 

 

The direction cosine matrix parametrized in Section 2.2 can also be parametrized in terms of quaternions, as 

follows: 
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At this point we are ready to develop the equation of motion for a rigid body satellite that moves in a circular orbit 

under the gravitational force. The set of kinematics and dynamics equations will be deduced in the next section. 

 

3. Euler’s Equation of Motion 

 

The satellite will be considered in a circular orbital with an angular velocity in the orbital reference frame, 

2b̂norbital −=ω
)

, and an angular velocity of rotation related to the inertial reference frame given by 

321
ˆˆˆˆ nrnqnpbody ++=ω . According to Wie and Jianbo (1995), the vector body angular rate referring to orbit 

coordinates is given by: 
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Then, the kinematics equation of motion can be described as follows, 
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In order to derive the dynamic equation of motion the vector position from the Earth’s center and the rigid body 

3b̂Rorbital −=  must be also transformed into the inertial reference frame as showed below, 
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The gravity gradient torque gravityΓ  can be expressed by the following approximation, (Wie and Jianbo, 1995): 
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were, 

 

J is the satellite inertial matrix about a body-fixed reference frame at the center of mass and n is the orbital rate. 

 

The orientation of the spacecraft is accomplished using three reaction wheels that are aligned along three body-

fixed control axes. The total angular momentum of reaction wheels and the angular moment of the spacecraft are 

given by, 

 

uJH bodyawheels
ˆ. += ω&   (6)  

bodycraft JH ω&.=   (7) 

craftwheelstotal HHH +=   (8) 

 

were, 

 

aJ  is the inertial matrix of the gyrostat spacecraft about a body-fixed reference frame, which is assumed to be 

aligned with principal axis of the gyrostat and û  is control input vector. 

 

The rotational motions of a rigid spacecraft are described by Euler’s equations: 
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Substituting Eqs. (5) and (8) into Eq. (9), we obtain the dynamics equation of motion of a satellite in a circular 

orbit, as follows, for roll, pitch, and yaw, respectively: 

 

))())(221()(6(
1

322314132

2

2

2

1

2

32

1

qrJJrhqhuqqqqqqnJJ
JJ

p
a

−−−+++++−−−
+

−
=&  (10a) 

))())(221()(6(
1

311324231

2

2

2

1

2

31

2

prJJrhphuqqqqqqnJJ
JJ

q
a

−++−+−++−−
+

−
=&  (10b) 

))())(()(12(
1

2112342314132

2

21

3

pqJJqhphuqqqqqqqqnJJ
JJ

r
a

−−−+++−+−−
+

−
=&  (10c) 

4. Control Strategy  

 

The control strategy used in this work is based in feedback controller with saturation control and slew rate 

constraints, (Wie and Jianbo, 1995). Let a spacecraft performing a reorientation maneuver. This maneuver shall be 

performed as soon as possible but within the saturation limits of the reaction wheels. In other words,  

 

maxNu ≤ , where maxN  is the maximum torque available to reaction wheels. 

 

The globally stable quaternion feedback control law of Wie and Jianbo (1995) was modified to be implemented not 

as initially referenced but as an orbit referenced pointing control law which is showed below, 
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where, 

 

K=kJ,   C=cJ      Positive scalar diagonal matrix.  

 
di(t)  External disturbance 

 

Qerro=[q1erro, q2erro, q3erro]     Vector part of the error quaternion and ⊗  denote the vector cross product. 

 

The error quaternion matrix will be the difference between the commanded quaternion qc and the current 

quaternion qi . 
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To perform a reorientation eigenaxis maneuver with slew constraint a saturation controller was developed in order 

to provide torque saturation of reaction wheels but which still ensure the eigenaxis rotation under specific slew rate 

constraint.  Using the Cascade-Saturation Control method described in Wie (1998), the Eq. (11) can be rewritten as 

follows, 
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where, 

 

P=diag(p1,p2,p3), 

C=cJ 

 

And furthermore we chose 
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Where ii pkk ≅ is a positive scalar constant; then we have the following results for all [ ]*,0 tt ∈ : 

 

a. The close-loop satellite attitude dynamic is obtained substituting the Eq. (12) into Eq. (9) which the result 

is an eigenaxis rotation about q(0). 

b. The actual slew rate about the eigenaxis is bounded as max)( θω &≤tbody  and increases monotonically. 

c. The attitude error )(tqerro  decreases monotonically. 

d. At time *t , we have 1)( * =tqp ii  for all i=1,2,3. 

 

The results described above are deduced from the Lemma 7.3 showed in Wie (1998). 

 

Using the results showed above it was developed an algorithm in order to obtain the saturation control logic. 

 



Let the normalized reaction wheels vector torque and the error quaternion vector defined, respectively as, 

 

Nwheels=diag(1/N1max, 1/N2max, 1/N3max)     (13) 
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Substituting the Eq. (14) into to Eqs. (12) we have, 
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The control input vector acting in the spacecraft, becomes,  

 









>

≤

=
1

1

uNif
uN

u

uNifu

u
weels

weels

weels

c   (16) 

 

Verify in the Eq. (16) that the control input vector is function of the saturated torque vector. 

5. Stability Analysis 

 

 The closed-loop attitude dynamics of a rigid spacecraft employing the saturation control logic of Eq. (15) are then 

described by: 
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where the kinematics equations are described by Eqs. (2) and (3). 

 

The asymptotical stability of the closed-loop system can be verified using a positive definite function of the form 

 

qVV
K

V += ω)
1

(   (18) 

 

where qVV ,ω are the quaternions Lyapunov function and angular velocity Lyapunov function, respectively. The 

Lyapunov functions are defined as follows: 
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The time derivative of V along the closed-loop trajectory by Eq.(18) becomes 
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This means that the closed-loop system is asymptotically stable, and q(t) and )(tω  will become zero. 

 



At *tt = , )( *tq  and )( *tω lie along the vector q(0), for *tt ≥ , the derivative of Lyapunov functions are given by 
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if 0<qV& , then it is possible to have 0>ωV& , it is also possible that the rate limitation be violated. This situation can 

be avoided by properly choosing c, as shown below. 

 

If the angular velocity vector )(tω  lies along the direction of .,.),0( eiq  
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where a(t) is a scalar function with a(0)=0, then q(t) of Eqs. (2) and (3) will remain along the same direction of 

q(0); the resulting motion is an eigenaxis rotation about q(0), Theorem 7.2, Wie  (1998). 

 

Since )(tω  lies along q(0), this implies that q(t) also lies entirely along q(0), so there is a scalar function g(t) such 

that 
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Substituting the maximum slew rate, maxθ& , into the Eq. (17), we obtain 
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the solution of Eq. (26) can be written as 
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Substituting Eqs. (25) and (27) into the quaternions kinematics differential equation, we obtain 
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Furthermore exists a time instant t
*
 satisfying  
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Using the results described in Theorem 7.2 the kinematics differential equation can be rewritten as a second order 

equation since the maneuver is an eigenaxis rotation. 
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with the following initial condition 
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where θ  is the rotation angle about the eigenaxis. Assuming that θ  is small the Eq. (31) becomes 
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Then we can properly choose k and c as follows: 
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where ζ and nω , are the damping ration and the natural frequency of a second-order dynamic system. It is clear 

that the slew rate will not exceed maxθ&  for all ),0[ ∞∈t  if we do not choose a small ζ . 

6. Numerical Results 

 

In this section we presented an example with numerical simulation results in order to demonstrate the performance 

of the saturation control logic applied for a satellite, rigid body, in a circular orbital. This controller was developed 

to ensure a reorientation eigenaxis maneuver with a specific maximum wheel torque and a maximum slew rate. The 

initial and final satellite orientation expressed in quaternion  (sequence x-y-z) are set as q(0)=[ 

0.3919,0.2006,0.5320,0.7233]
T
, )0(ω =[0.05,0.03,0.05] deg/s  and  q(tf)=[0,0,0,1]

T
 . The external disturbances 

are represented by a White Gaussian Noise (wgn) injected by .3,2,1),.()( == imNwgntd i . 

 

The reaction wheels configuration and all satellite parameters used in this simulation are showed in Table 1. 

 

Table 1 – Reaction Wheels and Satellite Parameters 

 

Satellite inertial matrix (J) [1.4286 1 1.0476]Kg.m
2 

Gyrostat inertial matrix ( aJ ) [0.1 0.1 0.1] Kg.m
2 

Maximum reaction wheels 

torque (Nwheels) 

[0.3 0.25 0.20] N.m 

Maximum slew rate ( maxθ& ) 0.2 deg/s 

Orbital Rate (n) 0.01 deg/s 

 



 
Figure 1 – Time histories of quaternions attitude tracking. 

 

 
Figure 2 – Time histories of angular velocities. 

 

 

 
Figure 3 – Reaction wheels control torque histories. 

 



 
Figure 4 – Time histories of qixqj. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 – Time histories of external disturbances. 

 

Figure 1 shows that the reorientation about the eigenaxis maneuver was successfully performed. Figures 2 and 3 

demonstrate the satisfaction of constraints of the control variables, where the reaction wheels control torque and the 

wheel speed are shown within the design limits developed in Section 4.0. It should be pointed out that the 

component of the wheel speed around the y axis reaches the orbital rate in steady state phase. The qiXqj plots in 

Figure 4 clearly indicate the speed deviation of the instantaneous rotational axis with respect to the initial eigenaxis. 

The perfect eigenaxis rotation becomes a straight line in the qiXqj plot. Figure 5 illustrates the external disturbance 

injected in the system in order to check the performance of the controller projected.  

7. Conclusion 

 

A useful quaternion feedback regulator with control and slew rate constraints has been developed and successfully 

applied to a satellite in a circular orbital.  The proposal non-linear feedback control law showed effectiveness upon 

actuator and sensor saturation limits. Future works will extend the quaternion feedback regulator with slew rate and 

control constraints into a set of hybrid state equation of motion for a flexible satellite. 
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