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Abstract.  The role of thermal energy storage in the HVAC industry  has been continuously increasing over the last 
years, powered by the adoption of “peak” and “off-peak” power consumption periods (and rates) by electrical 
utilities. As a result, many works have been devoted to modeling and predicting the transient response of both sensible 
and latent heat storage units, over a variety of geometry. Phase change units have some advantages over sensible heat 
units, due to its higher storage capacity (per unit volume) and lower average chiller operation, which impacts the 
system performance as a whole. Accordingly, the present work is dedicated to the development and solution of a simple 
mathematical model for the heat transfer phenomena within a latent heat storage unit, consisting of a tank containing 
phase change material (PCM) enclosed within spherical capsules. Several assumptions are made with a view to 
maintain the model as simple as possible, without disregarding a careful reflection about its accuracy and impact on 
the reliability of the solution. In particular, simulation is carried out for small values of the Stefan number (Ste), which 
allows the solidification to be predicted by a quasi-stationary model. The model results in a system consisting of a 
partial differential parabolic equation, which describes the temperature field along the channel, and an integral 
equation, which is to represent the phase change evolution within a spherical capsule. The model is solved is solved 
using a fully implicit finite-volume discretization technique. To obtain more general results, all the physical variables 
are arranged in non-dimensional groups, the influence of which on the response of the storage unit is evaluated.   
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1. INTRODUCTION 

Thermal energy storage’s role on the struggle for a more rational use of energy resources has increased over 
the last decades. This could be explained by the wide variety of applications in which it can be found, such as in solar 
energy, air-conditioning and cogeneration, to name a few. Thermal energy can be stored as both sensible and latent 
heat. The latter allows a higher storage capacity per unit volume, as well as a storage constant temperature. The use of 
sensible heat, however, allows constant heat transfer rates, which cannot be accomplished using PCMs due to the 
variation of the thermal resistance imposed by the solidified or melted layer. There are a number of techniques of latent 
heat storage, but they can be generally divided into two main categories Dorgan and Elleson (1993): 
  
• “Bulk storage”, where the total amount of PCM is fully contained within the same enclosure. 
• “Encapsulation”, where the total amount of PCM is divided over a number of capsules. 

The objective of this work is to investigate why encapsulation has become more popular than bulk storage over the 
last years, that is, why should one use several (smaller) capsules rather than just one to contain a certain amount of 
PCM, using more familiar non-dimensional parameters when compared to previous efforts. Accordingly, the transient 
response of a latent heat storage unit, as described in Figure 1 will be studied. The PCM is contained in spherical 
capsules, randomly disposed within the storage tank.  
 

 
 

Figure 1: Storage Tank 



Prusa, Maxwell and Timmer (1999) developed a model for thermal energy storage using rectangular containers 
which takes into account the unavoidable sensible heat which accompanies latent heat storage, since there is always a 
difference between storage and inlet transport fluid temperatures. Arnold (1990, 1991) developed a numerical code to 
predict the charge and the discharge of latent heat storage within spherical capsules. A calorimeter was used to measure 
the evolution of the overall thermal resistance as a function of the solidification front progress, resulting in a semi-
empirical model able to predict some actual features of latent thermal storage, such as subcooling and PCM fracture due 
to difference on solid/liquid specific volumes. Gong and Mujundar (1997) proposed the use of several PCMs in a 
system consisting of multiple shell-and-tube thermal storage units. Regarding cylindrical capsules (tubes), Alexiades 
and Solomon (1993) proposed a quite simple model which disregards PCM temperature distribution, as well as sensible 
heat storage within the PCM and the transport fluid. Farid and Kanzawa (1989) proposed a model which takes under 
consideration both PCM sensible heat and temperature distribution during phase change, and suggested the use of 
several PCMs with different melting temperatures to make it possible to achieve more uniform heat transfer rates 
throughout the tank.  Although several works have been recently devoted to the study of encapsulated PCMs , such as 
Vyshak and Jilan (2007) and Hendra et al.(2005), a simple comparison between bulk and fragmented PCMs 
performances seems to have been disregarded by previous efforts.  
 
 
2. MODEL DEVELOPMENT 

 
 

The mathematical model is based on some simplifying assumptions:  
 
1)  The tank is represented by a control volume with one inlet and one outlet. 
2)  The tank is initially “hot”, filled with both PCM and transport fluid at phase change temperature Tm. 
3)  All walls are perfectly insulated. 
4)  All vertical walls are impermeable. 
5)  The thermal capacitance and resistance of the tubes walls are negligible. 
6)  The sensible heat stored within the PCM is small when compared to the latent heat. 
7)  The spherical capsules bed is represented by a porous media, through which the transport fluid flows. The heat 

transfer is represented by a heat generation rate per unit volume, which is distributed along the flow direction 
 
 

All the assumptions are realistic within the scope of the present study. The first four assumptions, for instance, are 
common to all model and experimental devices. The fifth is as good as smaller are the thickness and thermal 
conductivity of the capsules, which is also a common feature of actual devices. The sixth is reasonable for small values 
of the Stefan number, which is frequently the case in latent heat units. This assumption allows the use of a simple and 
yet effective phase-change model. The seventh assumption enables us to represent this two-dimensional domain by two 
separate domains, which are coupled through the heat generation rate. 
 
 

 
 

Figure 2: A comparison between physical and numerical domains 
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As depicted in Figure 2, the flow cross-section in the real tank is wider than in the model. This happens because 
when one assumes a uniform flow field throughout the tank, a representative area can be found only on a volume rate 
basis: 
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This enables us to write the one-dimensional transport equation, from which the transport fluid temperature field will be 
obtained: 
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where q is a heat generation rate (per unit volume) which is locally distributed according to 
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which represents the heat transferred from the PCM to the transport fluid. The overall thermal resistance Rt combines in 
series the thermal resistances offered by convection through the capsules surface and conduction through the 
progressively increasing layer, as represent by Figure 3.  
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Figure 3: Schematic of the heat transfer process within a capsule 

 

The position of the solidification front Rm will be found by using a quasi-stationary model of change of phase 
(Alexiades and Solomon (1993)). Accordingly, 
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Subjected to the following boundary conditions: 
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Knowing the temperature profile, it is possible to apply a differential balance on the solidification front  
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in which γ is the latent heat of the phase change material 

0(0)mR R=  (initial position of the solidification front)      (10) 

resulting in 
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Since one cannot obtain an explicit form for Rfs/R0, it is necessary to solve Equation (11) simultaneously with Equation 
(3). In order to conduct a more concise analysis, it is advisable to rewrite Eqs. (11) and (3) in non-dimensional forms. 
Defining the following non-dimensional parameters,  
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and replacing them in  Eq.(3) 
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initial condition: ( *, 0) 0xθ =          (18a) 

boundary conditions  
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Also, defining the modified Stefan number 
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and introducing the non-dimensional variables into  Eq. (11) one would obtain 
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The solution is then obtained by solving simultaneously Eqs. (17) and (20). The domain relative to Eq. (17) is 
divided into a finite number of volumes by using the upwind scheme to represent advection and the fully implicit 
scheme for the transient term (Patankar, (1980)). The resulting tri-diagonal matrix is then solved for each time step, and 
after the temperature field (θ(x*)) is obtained, the radii ratio field R*(x*) is calculated from Eq. (20). Since the value of 
the integral in Eq.(20) is available from simple numeric integration, this equation turns into a simple algebraic cubic  
equation for R*, which is solved by Newton’s method. Accordingly, a discretization scheme is only required by Eq,(17), 
which is presented below for an interior nodal point “i”. All the geometric constants in Eq.(17) have been lumped into a 
non-dimensional parameter V*. 
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3. RESULTS 

Since the mathematical model adopted disregards the sensible heat capacity of the PCM, the storage unit is 
considered to be initially at the phase change temperature. Accordingly, the phase-change front shields the capsule core 
(which remains at Tm throughout the process) and all the heat flux is consumed by the phase change progress. The time 
required to charge the unit as a function of the number of spheres Ns is illustrated in Figure 4. It can be seen that 
increasing the number of spheres will shorten the process only up to a certain point, and that excessive fragmentation of 
the storage media will result in decreasingly storage rates. The existence of an optimum degree of fragmentation can be 
explained by verifying the limits of the thermal resistance and the total heat transfer area as R0 is continuously reduced. 
The total area increases as R0 approaches zero, since the capsule bed can be taken as a porous media. However, R* 
always varies between 1 and 0, which causes the thermal resistance to vary from its initial value to infinite. The 
continuous reduction of R0 will result in smaller average values of R*, and thus higher average values for the thermal 
resistance Rth. Accordingly, the increasing degree of fragmentation of a given volume of PCM represents a trade-off 
between the total heat transfer area and the thermal resistance within an individual capsule.  
 



 

 
 

Figure 4: Influence of the number of capsules over the storage process 
 

The values depicted in figure 4 were obtained by varying the number of capsules simultaneously with the 
values of Bi, so that the solely effect would be the increase in the number of capsules. Figures 5 and 6 depict the sole  
influence of Bi over the R* distribution throughout the tank. It can be seen that for a small value of Bi (Figure 4), the 
increase in the number of capsule will drastically shorten the storage process, whereas for a high value of Bi (Figure 5), 
the time required to charge the unit is insensitive to the degree of fragmentation. For a high Bi value, the thermal 
resistance offered by the conduction is higher than that offered by convection, so that an increase in the total heat 
transfer area  has little significance. Conversely, for a small value of Bi, the component relative to convection prevails, 
such that an increase in the number of capsules will significantly shorten the storage process. 
 

 

 
 

Figure 5: Influence of the number of capsules over the storage process,  Bi =0,1 
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Figure 5: 

 
Figure 6: Influence of the number of capsules over the storage process,  Bi =10,0 

 
4. CONCLUSIONS 
 A simple mathematical model for the thermal storage within phase change packed beds has been developed 
and solved using a discretization technique. The results show that the current trend in the design of such systems, 
namely the use of a fragmentation of the storage media in fact shortens the storage process up to a certain limit, beyond 
which the performance stars to decrease.  
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NOMENCLATURE 
 
 

AAVE = Average flow area 
Bi  =Biot Number 
Cp  = Transport fluid specific heat 
h  = Convective heat transfer coefficient 



H  = Tank Height 
HTF = Heat transfer fluid 
K  = Heat transfer fluid thermal conductivity 
Kpcm = Phase change material thermal conductivity 
K*

  = Thermal conductivity ratio 
Ns  = Number of Spheres 
P  = Tank length 
PCM      = Phase change material 
Pe          = Peclet number 
q  = Heat generation 
R  = Radial Position 
R0          = Capsule radius 
RR         = Radii ratio 
Rth          = local thermal resistance  
Stemo        = Modified Stefan number 
t            = Time  
T           = Transport Fluid Temperature Field. 
Tin  = Heat transfer fluid inlet temperature 
Tpcm = Temperature through the phase change layer 
Tm         = Temperature of phase change 
u  = Characteristic velocity of the flow  
Vt  = Storage Tank Volume 
x  = Flow direction 
x*          = Non-dimensional flow direction 
 
Greek symbols 
 
ρ   = Density 
γ   = PCM latent heat 
τ   = Non-dimensional time 
θ   = Non-dimensional temperature 

  
 
Subscripts 
 
m   = melting 
pcm  = phase change material 
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