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Abstract. The problem of a thin plate subjected to an uniform load anthteral contact is developed. The formulation is
based on a Classical Laminated Plate Theory (CLPT), knovth@&irchhoff Model, and on the Equivalent Single-Layer
Theory assumptions. The objective of this paper is to dgvah approximate solution to the displacement which is
treated as a nonlinear discretized problem solved by Newtdethod. Hence, in order to solve the variational ineqtyali
problem the Exterior Penalty Method is considered. Alsogpproximate solution to this problem can be obtained by
applying Ritz method. In this case, the approximation fiditeensional space is defined. It is demonstrated through
this solution that the discrete problem is nonlinear sirfoe the given distributed load (z), we are not able a priori to
know if the string will be constrained by the support or ndiefiefore, to define the contact area in the contact problem,
the load is applied following an incremental technique,dshen the response of displacements and forces for the load
applied at a previous step. The problem is implemented il@atab® code. Finally, to validate this procedure, results
are shown considering the unilateral contact problem redhto the thin plate clamped in two edges with a rigid obstacle
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1. INTRODUCTION

In this work, the Ritz Method is applied first, to plate bergloonsidering small strains and second, to the unilateral
contact analysis, without friction, between a plate andjalrobstacle. The Kirchhoff's model, which is a refined theor
that holds for thin plates, is used. The algorithm and theyware used to numerical implementation are described.

2. PRELIMINARIES
2.1 Kirchhoff Plate Theory
2.1.1 Kinematics Assumptions

In this paper, the analyses of plates is based on Equivategiedayer theory (ESL) — (Reddy, 2004), which is derived
from 3D elasticity model by suitable assumptions. Thus pitedlem is reduced to a 2D. The Kirchhoff Plate Theory is
the simplest ESL plate model and it is based on the followisgldcement field:

0
u(%%%ﬂ = u0<xay7t) -z %
0
U(xayaz7t):1}0(xay7t)_zalyo (1)

w(xaya Z7t) = wo(xaya t)

Itis assumed that the Kirchhoff Hypothesis holds: (a) gtrélines perpendicular to the midsurface before defornati
remain straight after deformation; (b) the transverse adsrare inextensible and (c) the transverse normals ratate s
that they remain perpendicular to the midsurface afterrdedtion.

2.1.2 Constutive Equations

In the classical plate theory, all three transverse stramponents are zero by definition, i, = ¢;, = ¢,, = 0.
For assumed displacement fiel in Eq. (1), the strains redoces
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For generalized plane stress, the strian-stress relasaigen by:

O = m(em + veyy)

®)

Oyy = m(z—:yy + Very)
Ozy = Gy
where the constant® andv represent the Young modulus and the Poisson ratio, resplcti

2.2 Variational Method

The virtual work and variational principles can be used ttawbgoverning differential equations and associated
boundary conditions, (Deus, 2004). So, a special case girtheiple of virtual displacements that deals with linear a
well as nonlinear elastic bodies is known as the principlmwfimum total potencial energy and it is applied to solve the
variational problem. Letiy be the solution to the problem. Then,

m(Ug) < m(u) YueK 4)

thus,up minimizer(u), where:

w(u):l/DeadQ—/tyudQ— t-udly (5)
2 Jo Q T'r
Notice that,
1
= _ (Vu+wvu”
€ 5 ( + ) ©)
c=D-¢
replacing Eq. (6) into Eq. (5), the first integral is equal to
1 1
m(u) = f/ De-ecd) = f/ (OwwCos + OyyEyy + TuyYay) A @
2 Q 2 Q
substituting the relations of Eq. (3) implies that,
1 [ E E
m(u) =g /Q m(ﬁix + VEzaEyy) + m(fiy + Veraeyy) + G2y | dQ (8)
thus,
! _E 2 2 +2 Gy2, | dQ 9
7T1(U) = 5 o m(é‘xm +5yy + VE;cxf':yy) + P)/Ty ( )
Denoting,
A=¢e2 +e2 +2ep,e
B =,
and substituting the relations of Eq. (1)4hand B gives,
A= (g = 2w400)" 4 (0y = 2w,4y) + 20(up — 20 40) (0 — 2w 4]
2 (112)
B=[(uy+vz)— 22w 4]
hence,
(U =1 / E o yram)|a (12)
HEN Y A

LetQ = A x [—%, %} whereh is the thickness and is the area of the plate. Integrating trough the thickness
(z IS [—%, %]), i.e.dz,

h/2 h/2 h/2 13
/ ldz=h / zdz =0 / 2dz=— (13)

—h/2 —h/2
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the functional is given by,

1 Eh Eh? , AGH®
= - — 14
m1(U) 5 /A{l — (A1) + 0 _VQ)(B1)+Gh(u7y+U,z) D w”} dA (14)
with,
Ay = [u?, + 02 + 2vu v
1 [ ;2 7?/2 ) ay] (15)
By = [w?, +w’), 4+ 20w ppw yy |
Defining,
En3 E
— - 16
P=ha—w  “Taiey (16)
this implies that,
4Gh3
= - 17
o =2D(1-v) (17)
so,
Eh
m?(l —V)u v,y =4Ghu v, (18)

Substituting all relations and considering the static liggh the absence of in-plane forces, the functional takes t
form,

1
1 (w) = 5 /A D {(w,zz + w,yy)2 + 2(1 - V)[w2zy - lwyfiwvyy}} dA (19)
Now, supposing that the plate is subjected to a uniform Ipade second part of the functional reduces to:
7T2(IU)=/b-UdQ+/ t-udFT:/q-wdA (20)
Q T'r A

Therefore, the problem is reduces to determinate, y) that minimize the following functional:

1 Pw  Pw\’
w<w>:2AD{(a;§+ay§’) +2(1+v) }dA—/AqwdA (21)

2.3 Exterior Penalty Method

( 9w >2 9?w O%w

0xdy - 0x? Oy?

Consider again the string problem with an obstacle. Thelpmolzonsists in the minimization of the functionglw)
subjected to the constraint € K, i.e., in the determination of € K such that

m(u) = minm(w), Vw e K (22)

whereK = {w e W |w — g < 0at(z,y) € (0,L) x (0,L)}.
With the introduction of the indicator of the convex &&tdefined as

{0 4 uE

The application of the exterior penalty method determitessolution of Eq. (22) by solving a sequence of uncon-
strained problems, formulated as: Find: K that

u = 1in(1) Ue (24)

whereu, is the solution of: Giver > 0, determine:. € W solution of:

Ue = argur}nei& Te(w) (25)
in which
mo(w) = 7(w) + %P(w) (26)

The functionalP(w) must satisfy the following conditions:
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1. P(w)=0,ifweW
2. P(w) > 0andP(w) — oo, for [jw| — oo, w ¢ K

Differents forms to construction of the functiond(w) are presented in the literature. In this paper, will be atergd
the functionals differentiables, representing the restm of the unilateral contact, so the contact in one paigfiven by
P(w) = [(w(z*,y*) — g)']>. Where,

o+ _Jw—g, i w—g>0
{w—g) { 0, if w—g<0

Consequently, the extended functional considered jushépmint of contact yields:

1 Pw  Pw\’ Pw\* 9w ot
Te(w) 2/A {(M + 8y2> +2(1+v) (8x8y) 912 9y? }d (27)

- [ a wdn gl g - o) P
A €

2.4 Approximate Numerical Solution — The Ritz Method

An approximate solution to this problem can be obtained Iphyépg Ritz method, (Glowinski, 1984). In this case, it
is defined by

N
WPz, y) = a;pi(z,y) (28)
=1

whereg; are linear independent function given by(z, y) = x! Ty *" with m,n =1, ..., N.
Thus, replacing Eq.( 28) into Eq.( 27) yields,

() :%/[\D{[Ag]2+2(l+u)[33]} dA—/Aq.[CB]dA+2i€[D3]2 29)

where

(30)

N
Cs=>_a;¢;(z,y)
j=1

)

At this point, the problem is to find € R thata = argmin[r.(a)] and the discretized functional can be written as,
1
7e(a) = w(a) + iP(a) (31)
From the necessary optimality criteria for= RV to be the minimun ofr.(a):

T; =0 WészN—ﬂR (32)

Note that the discrete problem is nonlinear since, for thiergdistributed load, we are not alalgriori to know if the
plate will be constrained by the support or not.
The necessary optimality criterion establishes that

1
Vela =0 = Vrla + ?GVP(a) =0 (33)
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7(a) is a quadratic function in. Also, V|, is given by[K;]a — F, where[K;] is a constant matridv x N andF is
a constant vector. So, in this case:

2
P(a) = [Z;vzl aj(bj(x*,y*)—g} , if Zjvzl a;¢;i(x*,y")

0, it >i—10;0(2%,y%) <g
VP(a)|, is given by[K(a)]a. Thus,
[K1]a + %[Kg(a)]a =F = [Kl + 1[(2(@)] a=F (35)
denoting
[K(a)] = K1+ %K2(a) (36)

Finally, from the optimality criterion that must satisfy the following set of nonlinear equations:
K(a)a=F (37)
For the solution to the set of nonlinear equations, in Eq),([®@wton’s method is applied.
2.5 Newton's Method

Let R(a*) = F — [K(a*)]a” the residual vector, the problem consists in finding an apprate solutiora* such that
| R(a"®)|| < tol = 10~C. The algorithm may be described as:

1. initialize a*, error = 1, tol =10~% and setk =0
2. while (error > tol) do:
e compute the correctaka” by solving the following linear system
[K(a®)]Ad* = —R(a*) (38)
e compute the new trial solutios*+!
a*t = ok 4+ Ad* (39)
e compute the error measure
error= || R(a")|| (40)
e perform the update procedure
k=k+1, ab — gFtt (41)

3. end while

By the way, the iterative procedure associated with Newstaréthod is obtained.
3. NUMERICAL APPLICATION
3.1 Problem Analysed

Consider the unilateral contact problem related to the phéite problem, shown in Fig. 1. The problem is a square
plate clamped in two edges, subjected to a uniform load. Téehiamical properties and dimensions of the laminae are
the following: £ = 210 GPa,v = 0.3, h = 5 mm,a = 2m andb = 2m. The definition of the numbers of base functions
used in the aproximation procedureNs= 3. Also, the gap or penalty factor is = 10mm.

To compare the displacements before and after the platé eaigid obstacle, four loads are choosen, namely:
qo, = 2.5 KN/m?, qo, = 5 kKN/m?, go, = 50 kN/m? andqo, = 500 kN/m?. In the first case, the obstacle is not hitted. In
the second load, the plate is tangent with the rigid obstddie third and fourth loads reach the obstacle. The probdem i
solved using an uniform mesR(( x 20).
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Figure 1. The plate subjected to an uniform load,and a rigid obstacle.

The displacement plots in Fig. 2(a) through Fig. 3(b) helgemonstrate the behavior of the solutions.
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Transverse displacement, w (cm)
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Figure 3. Transverse displacements,

The effects of the error through the loads is shown in Tab.olsdlve the first case of the problem two iterations are
needed.

Table 1. Error evolution.

Error

Iteration qo, qo, qo, qo,
1 0.534 1.068 10.681 1.068E+2

2 2.654E-13| 1.824E+5| 4.524E+6| 4.794E+7
3 — 0.006 2.919 2.278

4 — 3.695E-9 | 1.548E-6| 1.593E-6
5 — — 2.740E-9| 1.127E-7
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4. SUMMARY AND CONCLUSIONS

This paper is concerned with the analysis of plate emplottiegRitz method. To solve the problem of the nonlin-
ear equations, the Newton’s method is employed. Also, therdhm is described. The paper focuses on the plate’s
displacements and how it affects the good behavior of a nigaiesolution. Using the transparency of the continuum
mechanics, the problem of the thin plate subjected to artmifoad and unilateral contact is solved. Four cases of load
were analyzed using the model.

It can be concluded that it is advantageous to use Newtonthadego solve a set of nonlinear equations and the
Matlab®R) code used is efficient.
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