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Abstract. The buckling load of thermally stiffened laminated plates is directly dependent on the stiffness distribution 

over the plate.  When using variable thickness within the plate the thermal residual stress can be used to increase the 

buckling load, although it can also decrease this load.  So, in order to take the maximum advantage of residual stress it 

is necessary to optimize the stiffness distribution over the plate in such a way to increase the critical buckling load.  

This new improved laminate in practical applications will not be subjected to only one constant temperature, in fact for 

aeronautical structural components the typical working temperature is from –54ºC up to 80ºC.  An usual optimization 

of laminated plates considers only one constant working temperature, but the final configuration may not be good for 

other temperatures, causing the component to buckle.  Looking at the problem of working temperature range this paper 

studies the optimization of laminated plates working in a temperature range, optimizing the critical load considering 

the full range of temperature.  For this study the objective function will be the buckling load maximized with respect to 

the layer’s heights, using a FEM model. 
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1. INTRODUCTION 
 

Laminated plates subjected to thermal differences can show thermal residual stress, depending basically on its 

geometry.  In symmetrical plates residual stresses appears only if the plate is reinforced or constrained.  Although it 

may feel that residual stress means a decrease in the plate buckling load, this is not always true.  As a matter of fact, if 

reinforces are correctly designed an improvement in the critical load of the plate may occur (Almeida and Hansen, 

1997).  For this to happen the reinforce design need to take advantage of  the residual stress distribution, which is a 

function of the temperature. 

When a laminated plate works within a range of temperature, which is a more realistic situation, but is optimized for 

a certain fixed temperature, it may show a lower critical buckling load in another temperature. To avoid this failure in a 

component we may optimize the reinforcement considering the full temperature range, which will give us an optimal 

design for the full working temperature range.  

This structural synthesis will be performed with a quadratic triangular plate finite element based on Reissner-

Mindlin theory, proposed by Sze et al. (1997) and which has its formulation described in detail by Lucena Neto et al. 

(2001), where also its capability was enhanced to deal with membrane behavior, as a flat shell finite element . 

 

2. FORMULATION AND RESULTS 
 

2.1. AST6 finite element 
 

Sze et al. (1997) proposed the AST6, a six node triangular element (Figure 1) based on Reissner-Mindlin theory for 

bending of plates.  This element uses quadratic interpolation for bending degrees of freedom (DOF) and linear 

interpolation for out of plane shear strain.  Lucena Neto et al. (2001) formulated the element explicitly, i.e., using 

analytical integration and added membrane DOF to it. 

 

 
 

Figure 1. AST6 in global coordinates and local coordinates 

To solve the buckling problem we will consider the pre-buckling stress state.  Immediately before the buckling of 

the plate acting stresses are due to a loading identical to the critical load. In order to determine this stress state two 

linear independent static stress analyses must be done: one for thermal loading and another for mechanical loading. 



Knowing the stress state we can compute the geometric stiffness matrices associated to each loading and then finally 

find the solution of the resulting eigenvalue problem. 

Details in the formulation of laminated plates and the linear finite element will be omitted here, but the formulation 

of the geometric stiffness matrix for the AST6 will be shortly explained.  The considered geometric stiffness 

formulation will be inconsistent, which means that the interpolation functions used to generate it are different from the 

ones used for the linear stiffness.  In this case quadratic interpolation functions are used for all the terms in the 

geometric stiffness.  This is done because the mesh locking effect does not occur with the non-linear deformation terms 

that appear in the geometric stiffness matrix.  The full deduction of this matrix can be found at Meleiro (2006), which 

leads to: 
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Where [Kg] is the geometric stiffness matrix, [NN] and [Ψ] are: 
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In Eq.(3) ni are the element displacement interpolation functions.  The terms Nij, Mij, Qij, Lij, Qi and Ti are stress 

resultants, defined for mechanical loads as: 
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Thermal residual stresses (subscript R) are calculated by the difference between the free thermal stress (subscript T) 

and the resulting stress acting on the plate (no subscript). 
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2.2. Buckling problem definition 
 

The theory of buckling deals with conditions under which equilibrium ceases to be stable.  A structure is said to be 

buckled when it loses stability (Reddy, 1997). 

Buckling of laminated composite plates can happen caused basically by three types of loads: compression in fiber 

direction, compression normal to fiber direction (in plate plane) and by shear (also in plate plane).  Any of these loads 

or combination of them will have a critical value, which is the load for which the plate loses stability and become 

buckled. 

To calculate the critical load we have the following eigenproblem with two geometric stiffness matrixes, one due to 

the mechanical load and another one due to the thermal residual stress (subscript R): 
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The critical buckling load factor λc applies to the mechanical loads, which cause plate instability.  This factor is the 

quantity we want to increase, so it will be the objective function of our design optimization of plate reinforcements. 

 

2.3. Reinforcements design optimization 
 

Optimization theory deals with  finding the minimum or maximum value of a given objective function, restrained or 

not by constraint functions. In this problem we will apply reinforcements to the composite plate as extra layers in 

predefined directions, forming different patterns over the laminate.  The design variables will be the heights of the 

reinforcement layers.  The optimization problem is: 
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The objective function, i.e., the critical buckling factor, is under two types of constraints.  The first one states that 

the mass of the plate can not be higher than mmax, which in our study cases will be the initial mass of the plate, so that 

plate buckling load will be improved without adding any mass to it.  The second constraints limit the heights of 

subsequent layers such that no penetration between layers may happen. 

To solve an optimization problem we need to constantly modify the design variables and calculate the objective and 

constrain functions.  These calculations may have a high computational cost, because here these functions are 

associated to the solution of many finite element eigenvalue problems.  In order to decrease the computational cost the 

RQA approximation technique will be used (Canfield, 1988).  This consists in solving the full finite element model to 

determine the critical buckling loads and buckling modes and also the derivates of modal strain and kinetic energies 

which respect to the design variables, and then use this information to create an approximation of the critical buckling 

load.  The critical load factor is given in terms of the Rayleigh quotient as: 
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In Eq.(10) U is the modal strain energy and T is the modal kinetic energy.  The RQA approximation for λc is given 

by 
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The temperature range will be discretized in 5 points, such that the optimization problem of Eq. 9 becomes one of 

maximization of the minimum eigenvalue: 
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In Eq.(12) λck is the critical buckling load factor for one of the temperatures in which the range is discretized. 

 

2.4. Study Case 1 – Longitudinal reinforcement 
 

The first study case will be a plate with eight reinforcements in along its longitudinal direction, symmetric with 

respect to the plate centerline and also to the plate midsurface. All regions have the same width, and because of the 

symmetry only 4 different regions are defined.  The reinforcements are applied over a constant base plate, and the 

heights of the pair of layers defining each reinforcement are design variables, therefore resulting in a total of  8 design 

variables (h1 to h8).  The plate geometry and dimensions are shown in Fig. 2 along with the design variables (xz plane 

view). 
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Figure 2. Geometry of plate with longitudinal reinforcements 

 

The initial value for all layers thickness is 0.15mm, which is constant for the base plate.  Typical fiber glass material 

properties shown in Tab.1 are used with the laminate sequence shown Tab. 2. 
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Table 1. Typical fiber glass properties 

 

Properties Value

Longitudinal elastic modulus, E1
154.5 GPa

Transverse elastic modulus, E2
11.13 GPa

In plane poisson ratio, n12
0.304

Transverse shear modulus, G23
3.36 GPa

Transverse shear modulus, G13
6.98 GPa

In plane shear modulus, G12
6.98 GPa

Longitudinal thermal expansion coefficient, a1
-0.17 X 10

-6
/ºC

Transverse thermal expansion coefficient, a2
23.1 X 10

-6
/ºC

 
 

Table 2. Laminate sequence for case 1 

 

Region Lamiate sequence

I [0,90,0,90]s

II [0,90,0,90]s

III [0,90,0,90]s

IV [0,90,0,90]s  
 

This plate is simple supported on all four edges, with lower-left corner constrained in x, y and z directions.  The 

lower horizontal edge is restrained in the y direction, while the upper horizontal edge has a -0.0036mm imposed  

displacement (y direction), such that the plate is compressed in this direction.  The working temperature range for this 

case is between -100ºC and -200ºC. 

The original symmetrical plate with its four regions initially equal, has a constant critical buckling load because no 

thermal residual stress are present prior to plate optimization.  As the optimization starts it runs towards a configuration 

where thermal residual stress are induced in a such a way to contribute to the increase of the buckling load.  The optimal 

final configuration obtained has the critical buckling load versus temperature curve shown in Fig. 3, which is 

normalized with respect to the initial plate buckling load.  It can be observed that a increase of more than 150% in the 

buckling load was possible. The optimum values of the design variables are presented in Tab. 3, corresponding to the xz 

view of the plate of Fig. 4. It can be seen that the optimal plate became thicker in the central region where the 

reinforcements consist of layers oriented at 0°  and thinner at the edges with 0° and 90° layers. 
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Figure 3. Case 1 normalized critical buckling load versus temperature 

 

Table 3. Case 1 design variables final values (mm) 

 

h1 h2 h3 h4 h5 h6 h7 h8

0.483 0.483 0.519 0.300 0.669 0.300 0.729 0.300
 



90º

0º

 
 

Figure 4. Optimized plate xz view 

 

From Fig. 3 one can see that the buckling load variation with the temperature is smooth, almost linear.  In fact the 

critical mode was observed to be nearly the same for all the temperature range, and so from Eq. 10 it can be seen that λc 

becomes directly dependent on the thermal residual geometric stiffness matrix , which is directly proportional to 

temperature. The curve isn’t linear because the critical mode in fact will have its shape slightly changed in the five 

discretization temperatures used. 

 

2.4. Study Case 2 – Frame shape reinforcement 
 

For this case a plate with same size and material from the previous test is considered.  Also the base plate is still the 

same, but now its height is also a design variable.  The main difference will be the reinforcement shape, which is now a 

frame as shown in Fig. 5, with cut views AA and BB in Fig. 6 showing the design variables (h1 to h6). 
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Figure 5. Optimized plate xz view 
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Figure 6. AA and BB cut views from Fig. 5 

 

The laminate sequence for each region is in Tab. 4, and again the initial thickness for each layer is 0.15mm.  In this 

case the plate will be optimized to support two different load conditions. For both cases all edges will be simple-

supported with the lower-left corner restrained in x, y and z directions.  The first load is a biaxial compression, applied 

with the lower edge constrained in y direction while the upper edge has -0.0002mm displacement in y direction, and the 

left edge constrained in xdirection with the right edge having -0.0002mm in the x direction.  The second load condition 

is a shear load case, with the vertical edges angularly deformed of ∆=1º, keeping the plate perimeter constant and the 
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opposite plate edges parallel (Fig. 7).  The small biaxial displacement is is used to force the biaxial buckling load to be 

equal the shear buckling load in the initial model, so both load cases are critical. 

 

Table 4. Laminate sequence for case 2 

 

Region Lamiate sequence

I [0,90,0,90]s

II [0,0,0,90,0,90]s

III [90,90,0,90,0,90]s

IV [0,90,0,90,0,90]s  
 

 

x

y

∆

 
Figure 7. Applied shear deformation 

 

The graph in Fig. 8 shows the critical buckling load of the optimized plate under two load conditions in the 

temperature range considered, normalized with respect to the the minimum initial plate buckling load, within the 

temperature range. It can be observed that a significant increase of 169% in the buckling load factor could be obtained.  

The optimum values of the design variables values are in Tab. 5, from where with the help of Fig. 6, it can be seen that 

the reinforcements  had a increase of thickness with respect to the initial configuration and the fourth initial layer was 

eliminated.  . 
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Figure 8. Case 2 normalized critical buckling load versus temperature 

 

Table 5. Case 2 design variables final values (mm) 

 

h1 h2 h3 h4 h5 h6

0.207 0.207 0.315 0.315 0.938 1.267
 

 

From Fig. 7, firstly it should be noticed that the initial plate critical buckling load is not constant as in case 1.  This 

is because the initial plate configuration already possessing frame reinforcements has also initial residual thermal stress.  

Again, even with the two applied load cases, the optimal plate configuration has an almost linear behavior of the critical 



load with temperature.  This seems to be the tendency of the composite plate optimization with the types of 

reinforcements used here. 

 

2.4. Conclusions 
 

The use of  appropriate techniques of structural optimization for the design of laminated composite plates under 

residual thermal stress, working in a given temperature range produced, with very modest computational resources, 

optimal solutions showing a high increase of plate resistance to buckling can be achieved.  Also, from the studied cases 

it was observed a nice behavior of the optimization convergence, with no difficulties present, specially with respect to 

the shifting of fundamental modes, which may be expected as a source of difficulty in composite plate design 

optimization.  As a matter of fact the optimal designs obtained  are in such a way that the critical modes are very similar 

at the different temperatures along the entire temperature range..  This means that the critical load variation is a smooth 

function of the temperature range, tending to linearity, which means that the optimization could be done for the worse 

temperature of the interval.   For instance, in cases 1 and 2, this would mean to optimize the critical load for  ∆T=-100º, 

with a new constrain forcing this to be the lowest load within the range, i.e., δλc/δT<0. 
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