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Abstract. The present work is concerned with a new general three-dilneal hydrodynamic-magnetic boundary inte-
gral formulation to be used in numerical simulations for ciésing the deformation of a ferrofluid drop undergoing a
magnetic field and a shear flow at low Reynolds numbers. Mosbd{s have been concerned with axisymmetric or
two-dimensional boundary integral formulation for axigyetric magnetic drops in electric or magnetic field, whiclyon
require treatment of line integrals. The present work, hesvewill consider the more difficult case of a three-dimenai
integral formulation for a hydrodynamic-magnetic surfatistortion. The formulation is based on an extension of the
Lorentz reciprocal theorem for the incompressible flow ofagnetic fluid. Combining the reciprocal theorem and the
fundamental solution of a creeping flow we obtain the integgaresentation of the flow in terms of hydrodynamic and
magnetic potentials. According to this formulation, thegmetic and hydrodynamic quantities which are necessary for
determination of the dynamics of a magnetic liquid are di&hbd by means of appropriate integral equations at the
boundary of the region occupied by the magnetic liquid. Ththod can be applied to compute by boundary integral nu-
merical simulations the distortion and orientation of ag¢brdimensional ferrofluid droplet under the action of sligr
motions and magnetic fields.

Keywords. creeping flow, boundary integral, reciprocal theorem, metgmdrops.
1. INTRODUCTION

In recent years the deformation of fluid interfaces undengoiied field have been considered as subject of numerous
investigations. Applications include the breakup of rainps in thunderstorms, electrohydrodynamic atomizatioe,
behavior of jets, drops in ink-jets plotters and optimiaatbf high-voltage car spraying tools. Magnetic drop defation
has been first studied by Arkhipenko, Barkov and Bashtov@78), and by Drozdova, Skrobotova and Chekanov (1979).
Experiments carried out by Bacri and Salin (1982) and Baudi @alin (1983) have been shown that when the magnetic
field is increased and subsequently reduced, hysteredie iddformation of the drop is observed. In addition, Bacri,
Salin and Massart (1982) shows that the drop shape jumpsdralightly elongated to a slender one, when the magnetic
field intensity is risen. Recently, Lavrova et al. (2006)diaecoupled system of Maxwell equations and incompressible
Navier-Stokes equation together with the Young-Laplacséqgn in order to obtain equilibrium shapes of ferrofluidlr
A related problem of a colapsing bubble in a magnetic fluid stadied by Cunha, Souza and Morais (2002).

The present work is concerned with a general three-dimeabmundary integral formulation to be used in numerical
simulations for describing the deformation of a three-disienal ferrofluid drop undergoing a magnetic field and a
shear flow at low Reynolds numbers. The boundary integraht@idation for a Stokes flow regime was first described,
in a theoretical way, by Ladyzhenskaya (1969) within therfeavork of hydrodynamic potentials. Boundary integral
methods have been successfully used for simulations ohpatéow around three-dimensional bodies (Alvarenga and
Cunha, 2006), nonmagnetic drop deformation and breakust{i@y Blawzdziewicz and Loewenberg, 1998), drop-tofuro
interaction (Loewenberg and Hinch, 1996; Guido and Sime®868; Cunha, Almeida and Loewenberg, 2003; Cunha
and Loewenberg, 2003), characterization of nonmagnetidsgam rheology (Loewenberg and Hinch, 1997; Zinchenko
and Davis, 2002) and emulsion expansion and foam-drop digsai@unha, Souza and Loewenberg, 2003; Cunha and
Loewenberg, 2003; Kraynik, Reinelt and Princen, 1991).

Although most work has been concerned with axisymmetrismordimensional boundary integral formulation for
axisymmetric magnetic drops in electric or magnetic fieldjol only require numerical treatment of line integralg(e.
Sherwood, 1988; Bacri et al., 1995; Bacri et al., 1996), tfes@nt work will consider the more difficult case of a three-
dimensional integral formulation for a hydrodynamic-matinsurface distortion. The problem falls naturally intt
parts: that of finding the magnetic potential, and that oédatning the fluid motion. In this way, the motion of a free
surface with arbitrary magnetic properties and with theasity of the magnetic liquid and the surrounding fluid naialq
may be explored with the present formulation. Two relevdayisical parameter are revealed in the present hydrodyramic
magnetic boundary integral formulation; the ratio of thegmetic permeability and the magnetic Bond number. We have
combined the hydrodynamic and the magnetic problem by mefemboundary integral technique. The next sections are
devoted to the mathematical development of a general tiraensional boundary integral formulation for a ferrofluid
deformable interface undergoing a magnetic field and a Stoxar
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2. GOVERNING EQUATIONS

The theoretical formulation developed in this article mayapplied for modeling the motion of drops of viscosity
n’, magnetic permeability’ and undisturbed radius immersed in a second immiscible fluid of viscositymagnetic
permeabilityu with externally imposed velocity>™ and magnetid *° fields, as described in Fig. (1)

uis H®

S

Figure 1. Sketch of a magnetic fluid drop in an emulsion undendernally imposed velocity and magnetic fields.

Hereupon\ = ' /n anda = /' /i denotes, respectively, the viscosity ratio and the magipetimeability ratio between
internal and external fluids. This problem is non-linear givés rise to non-Newtonian effects assigned to the magneti
stresses and the coupling between magnetism and hydrodysiam

2.1 Magnetostatics

In the absence of an electrical field and, if magnetic fieldsdbvary with time, Maxwell's equations (Grant and
Philips, 1990) reduce to the magnetostatic limit that iscdbed by the following equations

V-B=0 and Vx H =0, (1)

whereV denotes the partial differential operatd?,is the magnetic induction antl the magnetic intensity vector. In
addition, the magnetic relation

B = po(M + H) )

is valid at every point of the material. Her®/ is the local magnetization that reveals the intrinsic goétion state of
the continuum material promoted by the magnetic field ang- 47 x 10~7H/m is the permeability of free space. The
magnetizable liquid is assumed to obey a linear relalidn= y H, with x being the magnetic susceptibility. We focus
therefore on dilute soft magnetic material, i.e., supapegnetic fluid, that has a very short memory, resulting in an
instantaneous alignment of the particles with Under this condition Eq. (2) reduces® = (K — 1)H = pH, where

u = po(1 + x) denotes the permeability of the magnetic liquid d@id= p/uo = 1 + x is the relative permeability of
the magnetic liquid. It should be important note that, in fawumulation, we consider the magnetic permeability as ¢pein
a magnetic material constant. Therefdve, H = 0. Remembering thal{ is a irrotational field, thedd = V¢, where

¢ is the magnetic potential field, and the problem is governeithe Laplace equatiow?¢ = 0.

2.2 Hydrodynamics

As mentioned in §2. a hydrodynamic-magnetic coupled mmbis studied here. Therefore, besides the magnetic
equations, we must describe the hydrodynamic balanceiegeatn this sense, neglecting fluid inertia and compréssib
lity the hydrodynamic balance equations reduces to theeStéiaw regime described by Happel and Brenner (1965)

V-u=0 and V-0 =0, 3

whereu ando represents the Eulerian velocity field and the stress tesfdbe fluid. In a ferrohydrodynamic problem, as
the one explored herein, the coupling between magnetisrhydrddynamicsis given by the stress tensdhat considers
magnetic effects on the flow, namely

o=—-PI+2nD+ BH (4)
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where the notatiolB H corresponds to the dyadic or tensorial product betweeiBthed H usually written asB ® H,
n denotes the fluid shear viscosiflyis the identity tensor? is the total pressure an? = (1/2)(Vu + Vu®) represents
the rate of strain tensor. In additioWu” denotes the transpose tensoiRod. Herein, P is defined asP = py, + pm,
wherepy, is the static pressure apg, = (1/2)u0(H - H) is the magnetic pressure.

3. BOUNDARY CONDITIONS

On a drop interfaceS with surface tensiod’, the boundary conditions requires a continuous velocitpss the
interface and a balance between the net surface tractioguafate forces that express the discontinuity in the iateéaf
surface forces. Moreover, the magnetostatic regime dadeshe normal component & and the tangential component
of H to an interface between different media must be continuaiel(points across the interface). Mathematically, these
conditions are expressed as

u—u>® |r]—oo; u(x)=u(x); n-B(x)=n -Bx); nxH(x)=nxH(x), V €S, (5
whereu/, H' and B’ denotes, respectively, the flow, the magnetic field and thgnetic induction inside the drop amd
is the unit normal vector t&'. Considering an interface free of surface viscosity, @rfeasticity and surface module of
bending and dilatation, the constitutive equation for thetion jumpAt = [[n - o]] is written as Pozrikidis (1992)

At=[n-o]] =TV’ - nn— (I —nn) -Vl (6)

The notation][ ]] denotes a jump in flow quantities,= n - o is the surface tractioriy® = (I — nn) denotes the
gradient operation tangent to the interface, consequé&fitlyn denotes twice the mean curvature of the interfac&he
normal component includes the effect of the surface tenBiamile the tangential component is that due to interfacial
tension gradients, associated with the presence of sarfscin the fluid, named Marangoni effects. Furthermoregusi
a Lagrangian representation for the interface evolutioa dfop, one gets a kinematic constraint relating changéin t
interface position to the local velocity

%:u(m), YV x €S, ()

whereD /Dt denotes the material derivative.

4. MAGNETIC BOUNDARY INTEGRAL FORMULATION

In this section we discuss a three-dimensional boundaggiat method to solve Laplace equation, resulting from the
magnetostatic conditions given in Eq. (1), in terms of slagties at the interface between two magnetic fluids.

4.1 Reciprocal theorem for a magnetic potencial field

Consider a closed region of fluld bounded by a surface. Following this assumption, consider two distinct magneti
potencial fieldsy and¢’ acting, respectively, over two different magnetic fluidshapermeabilitieg: andy’. According
to the Green’s second identity (Jaswon and Symm, 1977), we ha

/ 6V — Vo) - ndS = / OV — V2BV, ®)
S Vv

where¢ and ¢’ are two scalar functions of position. Hene; andn means, respectively, the inwardly and outwardly
directed unit vector normal to the surfaSethenn = —n,. Being¢ and¢’ harmonic functions, like as the magnetic
potential field, the RHS (right hand side) of (8) vanishesiydag out the reciprocal theorem for harmonic functions

/Sgngb'-ndS:/Sgb'ng-ndS. 9

The Eqg. (9) means that if a solution for the magnetic potefiela ¢’ is known any field of interest can be determined.
4.2 Integral representation for a magnetic potencial field

Now, let's consider the particular case of interest with metg potencial fields. Here, the known magnetic potencial
field ¢’ is that given by the fundamental solutionGf¢’ = hd(r)

h "oy, with Vo) = —h—"— = "o (10)

/
#(r) Arpg 3 Amwpg

B A poer - 47 o
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whereC(r) = 1/r is the free space Green’s function corresponding to a squoite andVC(r) = —r/r* denotes a
potential dipole. The solution in Eq. (10) corresponds torttagnetic potencial field due to a point force with strerigth
Here,r = x — x( with « being an arbitrary point of the domainandx, the location of the pole and= |r|. Thus we
are interested to apply the solution in (10) to the reciprtdteorem given by Eq. (9). Here,is the unknown potential
in the domainl” and¢’ is a potential of a source point that is singularas> 0. Next, we consider two situations with
respect to the location of the singularity in the domain.

Singularity outsidé/: In the casej(r) = 0 insideV/, the reciprocal theorem in Eq. (9), after discarding theteaty
constant: # 0, takes the form

/ [6(@)VC(r) — C(r)Ve(@)] - ndS = 0 (11)

s

because the potencidl is not singular insidé’, if x is outsidel’.

Singularity insideV: When exists a singularity located at into V, it is needed to be excluded from the region of

integration. To overcome this problem, we place a small dednsphere of radius and volumeV. centered ateq
involving this singularity, as described in Fig. (2).

Figure 2. Fluid domai’ bounded by a surfacg broken down intd/z andV — V..

Then, outside the small sphere, throughout the remainihgn®V” — V. the functions within the square brackets in Eq.
(9) are continuous. In this way, again discarding the aabjtconstankt, the reciprocal theorem (9), applied to the surface
S — S. that bounds the volumg — V., becomes

[ 6@)vew) - c)vote)) - mds + [ 6(@)Ve() - ¢ o)) mds =0 (12
s S:
Now, considering the integral ovét containing the singularity,, with dS. = £2dQ; d2 denotes the infinitesimal solid
angle. Based on the fundamental solution given in (10), tipeessions for the potential monopd@lée-) and the potential
dipole VC(r) insideS. are given by

1 r
with the inwardly directed unit normal vector being = /. Therefore, for the limit — 0, one obtains
lim [ C(r)Vé() - nidS = lim 1Vé(@) nic2d2 = 0@) - 0 and (14)
£— S. g— S, &
lim [ ¢(x)VC(r) n;dS = — lim/ ¢(m)i252d9 = —¢(x0). (15)
e—0 S. e—0 S. £

With the results (14) and (15), the Eq. (12) reduces to

o(0) = /S [6(2)VC(r) — C(r) V()] - nds. (16)

By analogy with corresponding results in the theory of elgtimtics (Pozrikidis, 1992) and elastostatics (Jaswon and
Symm, 1977), the two integrals on the RHS of Eq. (16) are tdrthe single-layer and double-layer potentials. They
represent, respectively, a boundary distribution of thee@is function€ () andVC(r), amounting to boundary distribu-
tions of magnetic point sources and magnetic point dipoles.
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4.3 Integral representation in terms of jump conditions

At this point, we present two situations related with theifims of the singularity when we have two different fluids
separated by an interface Here,n is the unit outwardly directed normal to the drop surface agdinn = —n;.

Singularity inside the external fluid domaift According to the reciprocal theorem in (11) for the intdifhad ¢’ (inside
the particle) with the poink (singularity) exterior to the particle, we obtain

/S[¢’(:B)VC(T) —C(r)V¢'(x)] - ndS = 0. (17)

Now, applying Eq. (16) for the external fluid under an extéyrienposedo™ (x() and subtracting the Eq. (17) of it, one
obtains in terms of the jump conditiah— ¢’ andV (¢ — ¢’) that

¢(x0) = ¢ (w0) — /SC(T)V[¢(w) = ¢'(x)] - ndS + /S[¢(w) = ¢'(@)]VC(r) - ndS. (18)

Singularity inside the internal fluid domairi’: By the same procedure used to obtain (18), we determinentbgral
representation for the internal fluid applying Eq. (16) asde

¢ (@0) = — /S 6/ (2)VC(r) - C(r) V4 (z)] - ndS. (19)

In addition, using the reciprocal identity (11) for the exia fluid ¢ (outside the particle) with a point, that is located
in the interior of the particle and adding the result to EQ)(@ne obtains

o (@) = (@) ~ [ C(T(6(e) - (@) - ndS + [ [6la) - /(@) VC(r) - nds. (20)
s s
4.4 Integral representation for the interface

Now, we are interested in the solution of the magnetic pagtrield at the interface, that may be found by the
application of the jump conditiofi /2)[¢(xg) + ¢'(x0)] to the Egs. (18) and (20). Limiting, to the interfaceg(xo) =
¢ (xo), ¢ () = ¢(x) anduVo(x) -n = ;' V¢' (x)-n. Therefore, the integral representation for the interfabetween
two magnetic materials is given by

1—«

otan) = (en) + (12 [ ctIVola) mas (21)

(07

As beforea = 1//u. The Eq. (20) represents the solution for each paingt the interface as the summation of all
disturbance flows induced by the other points over the seyiacated at point.

5. HYDRODYNAMIC BOUNDARY INTEGRAL FORMULATION

In this section, a boundary integral formulation for conipgthe Stokes flow of a magnetic drop is derived by solving
integral equations for functions that are evaluated ovebthundaries. This formulation couples the integral equatior
the velocity and magnetic potential fields.

5.1 Reciprocal theorem for the flow of a magnetic fluid

Consider a closed region of fluid bounded by a surfacg. Then consider two unrelated incompressible flows of two
different magnetic fluids with densitigsandp’, viscosities; andr’, magnetic permeabilities andy’ and stress fields
ando’, respectively.

Flow 1. w, H, o (p, n, 1v). The balance equations for mass and momentum and thetatimstequation for a magnetic
fluid are respectively

V-u=0, V-o=0 and o=-PI+2nD+pHH (22)

Here, locally,u is the Eulerian velocityg is the stress field and is the magnetic field.I is the identity tensor,
D = (1/2)[Vu + (Vu)?] is the rate of strain tensor. AgaiR, = p;, + p.,, Wherep;, is the hidrodinamic pressure and
pm = (1/2)uoH? is the magnetic pressure.
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Flow 2 ', H', o’ (o', ', 1t). In the same sense shown in Eq. (22), the balance equationsafss and momentum and
the constitutive equation for this flow are, respectively,

V-u=0, V-0¢/=0 and o =-PTI+2)D +, /HH (23)

whereD' = (1/2)[Vu/ + (Vu')T] and P’ are the rate of strain tensor and the pressure field, regpctFrurthermore,
remind that the following tensorial operation for a incoegsible fluid isvalidf : D = V-u =0andl : D' = V-u’ =
0. Therefore, one may obtains

oc:D =2nD:D +puHH : D’ (24)
and, similarly,

o':D=27)D :D+uy/HH :D. (25)
The simmetry of botiD and D’ requires thalD : D’ = D’ : D. Using this argument, the Eq. (24) becomes

D:D/:D/:D:2—177(0':D/—MHH:D'), (26)
and, substituting the result (26) into Eq. (25), we obtain

a/:D:%/U:D/—u(%/HH:D/—%/H/H/:D) (27)

It should be important to note that for superparamagnetieri@ds ;.o M x H = 0 (the magnetic torque). In this case,
the stress tensor is symmetric. In this way, using Cauclgusigon given in Eq. (22), we may write

oc:D=0:Vu' =V -(u-0)-u-(V-0)=V-(u-0). (28)
Similarly, one may obtain that

oc':D=V-(u-d). (29)
Thereafter, we can evaluate the tefH : D’. Note thatEl H is a second rank symmetric tensor. Accordingly

HH:D' =HH :Vu' =V (u/-HH)—u'-V-(HH) (30)

but, using a vectorial identity, the magnetostatic regimlaibce equations x H = 0 andV - B = 0 and the assumption
of a constant magnetic susceptibiliy- H = 0. In this way, one obtains that

H? H?
V-(HH):H-VHJrH(V-H):V(T) + H X (VxH)JrH(V-H):V(T). (31)
Then, substituting (31) into (30), one may obtain
H2
HH:D’:V-(u’-HH)—u’-V(T) (32)
If the same steps are applied to the tefhAH’ : D, it must reduces in an analogous fashion to
H12
H’H’:D_V~(u-H’H’)—u-V<2>. (33)
Now, substituting the results (28), (29), (32) and (33) iBtp (27) and, after we determine
! / 2
V-(u-o')= %V-(u'-a)—,u{% [V-(u'-HH)—u'-V(HT)} —
/ 2
“—[v-(u-H’H’)—u-v(h; )” (34)
w

Finally, after making few algebraic manipulations, we d@bthe expression for the generalized Lorentz reciproaaitbm
for a Stokes flow of a magnetic fluid

09 o) o) =l [V E) v ()]
H2

iy {v (u-HH)—u' -V <7)] . (35)
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5.2 Integral representation for a Stokes flow of a magnetic flia

Consider the particular flow of interest with velocity magnetic fieldHd and stress tensaer. The known flow is the
one due to a point force with strengftyand located at a point,. Suppose that the inertia of both fluids has a negligible
influence on the motion of the fluid elements, and by conver@i¢akes) = 1/, p = p’ andy’ = 0. Flow 1 and flow 2 for
this particular situation are described as following.

Flow 1. uw, H, o. The equations for conservation of mass and momentum fdlavel and for the constitutive equation
are respectively

V-u=0, V-06=0, and c=—-PI+2nD+ uHH. (36)

Flow 2 v/, o’. The fundamental solution for Stokes equations correspaiige velocity and stress fields at a paint
produced by a point forcg located ateg

V-u' =0, V-o'=—fi(x—x), (37)
with |u/| — 0 and|o’| — oo as|x| — oco. The solution of such equations may be derived using Fotraasforms

G(r); o'(z)= _3f -T(r), where G(r)= % + :—§ and 7T(r) = %

(@) = - (38)

8mn
are the stokesla¥ and the stressléf’. The above functions are the kernels or the free-space Griegrctions that maps
the forcef atx to the fields at in an unbounded three-dimensional domain. Here x — x, andr = |r|. Physically,

u = G(r) - f expresses the velocity field due to a concentrated poinefﬁﬁttr) placed at the point,, and may be
seen as the flow produced by the slow settling motion of a spaaticle. 7;;;, is the stress tensor associated with the
Green’s functionw;; ando;, (z) = 7;; f; is a fundamental solution of the Stokes produced by the fdgaramic dipole

D - Vé(r). In addition,7;;; = 7Ty;; as required by symmetry of the stress tensoFinally, substituting the expressions
of the point-force solution (38) into (35) and discarding #rbitrary constanf ones obtain

3 1
\v& . V- . __ K

-= {V-[Q(r)-HH(:B)] ~G(r)-V (@)} (39)

8

Now using for the second term on the RHS of Eq. (39) the incesgibility condition of the singular solutiovi- G = 0
and the symmetry o tensor, so thag(r) - V(H?/2) = V - [G(r)(H?/2)], Eq. (39) becomes

Y fule) T - -V 160) - o)) =~ v - o) | HH(@) - <HT(”’>) 1 (40)

The above equation is valid everywhere except at the singuiimt ,. Now, consider a material volume of fluid
bounded by a singly or multiply connected surfata order to evaluate the integration of Eq. (40). The surfsiceay
be composed of fluid surfaces, fluid interfaces or solid segaThere are two situations to be considered next.

Singularity outsidd/: In this case, we select a poiat outsidel’. Then, all terms of the reciprocal theorem are regular
throughoutl’, and thus after integration of Eq. (40) the integral repmé&steon of the reciprocal theorem takes the form

/v dV——/v (x)]dV =

&m V'{g( ) - [HH(;C)_ <#> I]}dv,

Besides, the volume integrals in Eq. (41) are converteddestinface integrals ovéf, by using the divergence theorem

(41)

! g( )-o(x) n(x)dS — 43/Su(w) T (r) -n(x)dS+

871'77 T

e / G(r [ () — <H22(”’>) I} -n(z)dS =0,

wheren is the unit outward normal to the surfase Eq. (42) is the integral representation of the flow if thegsilarity
is outsideV/. It will be shown that the integral equation (42) is a usefigritity for developing new integral equations in
terms of jump conditions on an interface.

(42)




Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasilia, DF

Singularity insideV: Similar to the analysis developed in Sec. 84.2, if existigudarity located ateq into V, it is
needed to be excluded of our integration step. In order toertfaik integration, we define a small spherical volurmef
radiuse centered atcy, as shown in Fig. (2). In addition, the functions into Eq. €8 regular throughout the reduced
volumeV — V.. Then, integrating the Eq. (9) over— V. and converting the volume integral into a surface integsaigl
the divergence theorem, gives

1 3
5 SSEQ(T).J(:B) n;(x )dS_E/ w(x) - T(r) - n;(x)dS+ -
a H?(x) _ B
s s, 00 110 - (T)I] ni(@)dS = 0,

whereS. is the spherical surface enclosiig, as indicated in Fig. (2). Letting the radiagends to zero we obtain the
following expressions for the leading order terms ifor the tensorg; andZ’, namely
I orr rrT

Gr)m -+ T(r)=

44
—+ I (44)

ed
Over S., n; = r/e anddS = =2dS), where, as defined beforg, is the differential solid angle. Substituting these
expressions along with Eq. (43) and taking the limit- 0 we obtain

lim [ G(e) - o(x) n;(x)dS = lim <£ + E) co(x) - ni(x)e2dQ = O(e) — 0. (45)
Se

==0 /g, e—0 e &3

As e — 0, the values ofu, H ando tend to their corresponding values at the centev.gfi.e. tou(xq), H(xy) and
o(xo), respectively. By analogy the following term tends to zerthie limite — 0 decreasing linearly ia

lim [ G(r)- [HH(:L‘) - (@) I} “n;(x)e?dQ = O(e) — 0. (46)

e—0 S,

Also, the contribution of the velocity can be evaluated. hn the limite — 0, we have

lim [ w(x) - T(r) ni(x)dS=1lm [ u(x)- (ﬂ) -n;(x)dS = u(2o) /S rrdS = 4?Wu(mo). (47)

=0 Jg. ==0 Jg. eb o

Then, substituting the results (45-47) into Eq. (43), iegiv

u(w) = g [ 9 o(@) niz)as+ - [ ula) n(@)ds—

o - (£2] ]

Eq. (48) is the integral representation for the Stokes floa wfagnetic fluid in terms of boundary distributions invotyin
the Green’s function§ and the stressleér’. The first distribution on the RHS of (48) is termed the siAglger potential,
the second distribution is termed the double-layer paaénBoth integrals have already appeared in three-dimaakio
boundary integral formulations of non-magnetic fluids. Tast integral however represents an extra single-layeriat
contribution by the fact that the fluid is polar.

(48)

5.3 Integral representation in terms of the traction jump

Singularity inside the external fluid domalin: Using the reciprocal identity (42) for the internal flaw (inside the
particle) with the pointe, located exterior to the particle, one obtain

3\ [
87777/9 n(z )dS—E/Su(:B)-T(T)-n(w)dS—&—

S / glr [H/H’(“") - (Hé(m)) I} -n(x)dS = 0,

where, as defined beforé,= 7’ /n anda = u//u. Now, applying Eq. (48) for the external flow subject to an &nb
flow u*°(x(), and combining the result with Eq. (49), the integral repreation is obtained as a function of the traction
jump At(z) = [o(x) — U’(w)] -n(z),

u(xg) = u™(xo) — 87r77 / G(r) - At(x)dS — yp /S [u(x) — M/ (z)] - T (r) - n(x)dS+

™

sm/g H H(x) — (@) I} ~a [H'H'(w)— (H/z(w))I}}-n(w)dS.

(49)

(50)
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Singularity inside the internal fluid domaii’: We repeat the above procedure for the internal flow. Heheeintegral
representation of the internal flow is obtained when Eq. {@8pplied,

873/\17 / G(r)-o'(x)-n(x)dS + % /Su/(w) T (r) - n(x)dS—

877/\77 / g(r [HIHI(@ - (%) I] - n(z)dS.

Again, using the reciprocal identity (40) for the externalflu (outside the particle) with the singularissy, located in
the interior of the particle and combining its result with (5esults

u/(xg) =
(51)

M/ (zg) = u™(zo) — L/ G(r)- At(x)dS — 43 /S [u(z) — M/ (z)] - T (r) - n(x)dS+

™

sm/g H H(x) - (@) I} —a [H'H'(w)— (H/z(w))I}}-n(w)dS.

5.4 Integral representation for the interface

(52)

The integral representation for the flow solution at therfiatee is found by applying the jump conditiéhy/2) [u(xq) +
A/ ()] to the Egs. (50) and (52). For the limit @f, going to the interfacew(xz¢) = v/(xo) (continuity of velocity),
H, = H; (continuity of tangential component of magnetic field}Z,, = 1/ H', (continuity of normal components of
magnetic induction) and the traction discontinulty is given by the Eq. (6). Under these conditions only the irgkg
representation for the fluid-fluid interfadeneed to be considered, hence

1 3

(1+ N/ (zo) = 2u™>(xo) — ypes /SF(VS -n)G(r) - n(x)dS — %(1 - )\)/Su(:c) T (r) -n(x)dS +

“(iT_no‘)/sg(r) : { {Hth(m) - <@> I] - é [Han(m) - (H’Ql;”’)) I] } -n(z)dS.  (53)

where the vector field?,, = (H -n)nandH, = H - (I — nn).

5.5 Dimensionless integral representation

All quantities above are made dimensionless using the turbisd drop size, the relaxation raté€'/ua and a char-
acteristic magnetic fieldf,. The following dimensionless quantiti€g7) = aG(r), & = (n/I')u, T (7) = a*7 (r) and
H = (H/H,). In this manner, we can make dimensionless the Eg. (53).,Tdmnmay obtain

w0 = 15 - )/WS'"W(?‘) n(@)ds 1) /Sﬂ(i)-f(%) n@)dS+  (54)
Cam(l—« - f{f(:?:) 1]~ - f{g(i) oy
47T 1 +)\ /g { (:B) - (T) I] - a [Han(m) - (T) I] } n(m)dS (55)

(1+X) dr(14+ A 2 (14 X)
For linear shearing motiong,>°(z,) = Ca(EOO + W) &, with Ca = Ama/T being the capillary number, that
represents the ratio of viscous to surface tension strasaddition,Ca,,, = uHZa/T is the magnetic capillary number,
that represents the ratio of magnetic stresses to surfas®testress. Note that our magnetic capillary number isddfi
as a function of the magnetic permeability of the drop fluid.

6. Final Remarks

Equations (21) and (55) are considered the key results otdpled magnetic-hydrodynamic boundary integral
formulation presented here. The analysis described irptiper will be used in a future work to investigate by numérica
simulation the full time-dependent low Reynolds numberbpem for three-dimensional ferrofluid droplet deformation
under the action of shearing motion and magnetic fields, hateby infer some key properties of flowing magnetic
emulsions, when the viscosity ratio and the magnetic pebifigaratio of the two phases are not necessafilyl).
The hydrodynamic integral representation coupled withrttagnetic potential integral will determine the drop shape

evolution. The mathematical formulation developed herg beeextended in a straightforward manner to the problem with
multiple polydisperse drops, for the case of general sheassfin the presence of magnetic field where no experimental

studies of drop shape evolution are at present available.
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