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Abstract. The present work is concerned with a new general three-dimensional hydrodynamic-magnetic boundary inte-
gral formulation to be used in numerical simulations for describing the deformation of a ferrofluid drop undergoing a
magnetic field and a shear flow at low Reynolds numbers. Most ofworks have been concerned with axisymmetric or
two-dimensional boundary integral formulation for axisymmetric magnetic drops in electric or magnetic field, which only
require treatment of line integrals. The present work, however, will consider the more difficult case of a three-dimensional
integral formulation for a hydrodynamic-magnetic surfacedistortion. The formulation is based on an extension of the
Lorentz reciprocal theorem for the incompressible flow of a magnetic fluid. Combining the reciprocal theorem and the
fundamental solution of a creeping flow we obtain the integral representation of the flow in terms of hydrodynamic and
magnetic potentials. According to this formulation, the magnetic and hydrodynamic quantities which are necessary for
determination of the dynamics of a magnetic liquid are established by means of appropriate integral equations at the
boundary of the region occupied by the magnetic liquid. The method can be applied to compute by boundary integral nu-
merical simulations the distortion and orientation of a three-dimensional ferrofluid droplet under the action of shearing
motions and magnetic fields.
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1. INTRODUCTION

In recent years the deformation of fluid interfaces under an applied field have been considered as subject of numerous
investigations. Applications include the breakup of rain drops in thunderstorms, electrohydrodynamic atomization,the
behavior of jets, drops in ink-jets plotters and optimization of high-voltage car spraying tools. Magnetic drop deformation
has been first studied by Arkhipenko, Barkov and Bashtovoi (1978), and by Drozdova, Skrobotova and Chekanov (1979).
Experiments carried out by Bacri and Salin (1982) and Bacri and Salin (1983) have been shown that when the magnetic
field is increased and subsequently reduced, hysteresis in the deformation of the drop is observed. In addition, Bacri,
Salin and Massart (1982) shows that the drop shape jumps froma slightly elongated to a slender one, when the magnetic
field intensity is risen. Recently, Lavrova et al. (2006) used a coupled system of Maxwell equations and incompressible
Navier-Stokes equation together with the Young-Laplace equation in order to obtain equilibrium shapes of ferrofluid drop.
A related problem of a colapsing bubble in a magnetic fluid wasstudied by Cunha, Souza and Morais (2002).

The present work is concerned with a general three-dimensional boundary integral formulation to be used in numerical
simulations for describing the deformation of a three-dimensional ferrofluid drop undergoing a magnetic field and a
shear flow at low Reynolds numbers. The boundary integral formulation for a Stokes flow regime was first described,
in a theoretical way, by Ladyzhenskaya (1969) within the framework of hydrodynamic potentials. Boundary integral
methods have been successfully used for simulations of potential flow around three-dimensional bodies (Alvarenga and
Cunha, 2006), nonmagnetic drop deformation and breakup (Cristini, Blawzdziewicz and Loewenberg, 1998), drop-to-drop
interaction (Loewenberg and Hinch, 1996; Guido and Simeone, 1998; Cunha, Almeida and Loewenberg, 2003; Cunha
and Loewenberg, 2003), characterization of nonmagnetic emulsion rheology (Loewenberg and Hinch, 1997; Zinchenko
and Davis, 2002) and emulsion expansion and foam-drop dynamics (Cunha, Souza and Loewenberg, 2003; Cunha and
Loewenberg, 2003; Kraynik, Reinelt and Princen, 1991).

Although most work has been concerned with axisymmetric or two-dimensional boundary integral formulation for
axisymmetric magnetic drops in electric or magnetic field, which only require numerical treatment of line integrals (e.g.
Sherwood, 1988; Bacri et al., 1995; Bacri et al., 1996), the present work will consider the more difficult case of a three-
dimensional integral formulation for a hydrodynamic-magnetic surface distortion. The problem falls naturally into two
parts: that of finding the magnetic potential, and that of determining the fluid motion. In this way, the motion of a free
surface with arbitrary magnetic properties and with the viscosity of the magnetic liquid and the surrounding fluid not equal
may be explored with the present formulation. Two relevant physical parameter are revealed in the present hydrodynamic-
magnetic boundary integral formulation; the ratio of the magnetic permeability and the magnetic Bond number. We have
combined the hydrodynamic and the magnetic problem by meansof a boundary integral technique. The next sections are
devoted to the mathematical development of a general three-dimensional boundary integral formulation for a ferrofluid
deformable interface undergoing a magnetic field and a shearflow.
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2. GOVERNING EQUATIONS

The theoretical formulation developed in this article may be applied for modeling the motion of drops of viscosity
η′, magnetic permeabilityµ′ and undisturbed radiusa immersed in a second immiscible fluid of viscosityη, magnetic
permeabilityµ with externally imposed velocityu∞ and magneticH∞ fields, as described in Fig. (1)
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Figure 1. Sketch of a magnetic fluid drop in an emulsion under an externally imposed velocity and magnetic fields.

Hereupon,λ = η′/η andα = µ′/µ denotes, respectively, the viscosity ratio and the magnetic permeability ratio between
internal and external fluids. This problem is non-linear andgives rise to non-Newtonian effects assigned to the magnetic
stresses and the coupling between magnetism and hydrodynamics.

2.1 Magnetostatics

In the absence of an electrical field and, if magnetic fields donot vary with time, Maxwell’s equations (Grant and
Philips, 1990) reduce to the magnetostatic limit that is described by the following equations

∇ · B = 0 and ∇× H = 0, (1)

where∇ denotes the partial differential operator,B is the magnetic induction andH the magnetic intensity vector. In
addition, the magnetic relation

B = µ0(M + H) (2)

is valid at every point of the material. Here,M is the local magnetization that reveals the intrinsic polarization state of
the continuum material promoted by the magnetic field andµ0 = 4π × 10−7H/m is the permeability of free space. The
magnetizable liquid is assumed to obey a linear relationM = χH , with χ being the magnetic susceptibility. We focus
therefore on dilute soft magnetic material, i.e., superparamagnetic fluid, that has a very short memory, resulting in an
instantaneous alignment of the particles withH. Under this condition Eq. (2) reduces toB = (K − 1)H = µH , where
µ = µ0(1 + χ) denotes the permeability of the magnetic liquid andK = µ/µ0 = 1 + χ is the relative permeability of
the magnetic liquid. It should be important note that, in ourformulation, we consider the magnetic permeability as being
a magnetic material constant. Therefore,∇ · H = 0. Remembering thatH is a irrotational field, thenH = ∇φ, where
φ is the magnetic potential field, and the problem is governed by the Laplace equation∇2φ = 0.

2.2 Hydrodynamics

As mentioned in §2., a hydrodynamic-magnetic coupled problem is studied here. Therefore, besides the magnetic
equations, we must describe the hydrodynamic balance equations. In this sense, neglecting fluid inertia and compressibi-
lity the hydrodynamic balance equations reduces to the Stokes flow regime described by Happel and Brenner (1965)

∇ · u = 0 and ∇ · σ = 0, (3)

whereu andσ represents the Eulerian velocity field and the stress tensorof the fluid. In a ferrohydrodynamic problem, as
the one explored herein, the coupling between magnetism andhydrodynamics is given by the stress tensorσ that considers
magnetic effects on the flow, namely

σ = −PI + 2ηD + BH (4)



Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

where the notationBH corresponds to the dyadic or tensorial product between theB andH usually written asB ⊗ H,
η denotes the fluid shear viscosity,I is the identity tensor,P is the total pressure andD = (1/2)(∇u +∇uT ) represents
the rate of strain tensor. In addition,∇uT denotes the transpose tensor of∇u. Herein,P is defined asP = ph + pm,
whereph is the static pressure andpm = (1/2)µ0(H · H) is the magnetic pressure.

3. BOUNDARY CONDITIONS

On a drop interfaceS with surface tensionΓ, the boundary conditions requires a continuous velocity across the
interface and a balance between the net surface traction andsurface forces that express the discontinuity in the interfacial
surface forces. Moreover, the magnetostatic regime statesthat the normal component ofB and the tangential component
of H to an interface between different media must be continuous (at all points across the interface). Mathematically, these
conditions are expressed as

u → u∞ |x| → ∞; u(x) = u′(x); n · B′(x) = n · B(x); n × H ′(x) = n × H(x), ∀ x ∈ S, (5)

whereu′, H ′ andB′ denotes, respectively, the flow, the magnetic field and the magnetic induction inside the drop andn
is the unit normal vector toS. Considering an interface free of surface viscosity, surface elasticity and surface module of
bending and dilatation, the constitutive equation for the traction jump∆t = [[n · σ]] is written as Pozrikidis (1992)

∆t = [[n · σ]] = Γ∇s · nn − (I − nn) · ∇Γ (6)

The notation[[ ]] denotes a jump in flow quantities,t = n · σ is the surface traction,∇s = (I − nn) denotes the
gradient operation tangent to the interface, consequently∇s · n denotes twice the mean curvature of the interfaceκ. The
normal component includes the effect of the surface tensionΓ while the tangential component is that due to interfacial
tension gradients, associated with the presence of surfactants in the fluid, named Marangoni effects. Furthermore, using
a Lagrangian representation for the interface evolution ofa drop, one gets a kinematic constraint relating changes in the
interface position to the local velocity

Dx

Dt
= u(x), ∀ x ∈ S, (7)

whereD/Dt denotes the material derivative.

4. MAGNETIC BOUNDARY INTEGRAL FORMULATION

In this section we discuss a three-dimensional boundary integral method to solve Laplace equation, resulting from the
magnetostatic conditions given in Eq. (1), in terms of singularities at the interface between two magnetic fluids.

4.1 Reciprocal theorem for a magnetic potencial field

Consider a closed region of fluidV bounded by a surfaceS. Following this assumption, consider two distinct magnetic
potencial fieldsφ andφ′ acting, respectively, over two different magnetic fluids with permeabilitiesµ andµ′. According
to the Green’s second identity (Jaswon and Symm, 1977), we have
∫

S

(φ∇φ′ − φ′∇φ) · ndS =

∫

V

(φ∇2φ′ − φ′∇2φ)dV, (8)

whereφ andφ′ are two scalar functions of position. Here,ni andn means, respectively, the inwardly and outwardly
directed unit vector normal to the surfaceS, thenn = −ni. Beingφ andφ′ harmonic functions, like as the magnetic
potential field, the RHS (right hand side) of (8) vanishes, carrying out the reciprocal theorem for harmonic functions
∫

S

φ∇φ′ · ndS =

∫

S

φ′∇φ · ndS. (9)

The Eq. (9) means that if a solution for the magnetic potencial field φ′ is known any field of interestφ can be determined.

4.2 Integral representation for a magnetic potencial field

Now, let’s consider the particular case of interest with magnetic potencial fieldφ. Here, the known magnetic potencial
field φ′ is that given by the fundamental solution of∇2φ′ = hδ(r)

φ′(r) =
h

4πµ0r
=

h

4πµ0

C(r), with ∇φ′(r) = −h
r

4πµ0 r3
=

h

4πµ0

∇C(r) (10)



Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

whereC(r) = 1/r is the free space Green’s function corresponding to a sourcepoint and∇C(r) = −r/r3 denotes a
potential dipole. The solution in Eq. (10) corresponds to the magnetic potencial field due to a point force with strengthh.
Here,r = x − x0 with x being an arbitrary point of the domainV andx0 the location of the pole andr = |r|. Thus we
are interested to apply the solution in (10) to the reciprocal theorem given by Eq. (9). Here,φ is the unknown potential
in the domainV andφ′ is a potential of a source point that is singular asr → 0. Next, we consider two situations with
respect to the location of the singularity in the domain.

Singularity outsideV : In the caseδ(r) = 0 insideV , the reciprocal theorem in Eq. (9), after discarding the arbitrary
constanth 6= 0, takes the form
∫

S

[φ(x)∇C(r) − C(r)∇φ(x)] · ndS = 0 (11)

because the potencialφ′ is not singular insideV , if x0 is outsideV .

Singularity insideV : When exists a singularity located atx0 into V , it is needed to be excluded from the region of
integration. To overcome this problem, we place a small bounded sphere of radiusε and volumeVε centered atx0

involving this singularity, as described in Fig. (2).
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Figure 2. Fluid domainV bounded by a surfaceS broken down intoVε andV − Vε.

Then, outside the small sphere, throughout the remaining volumeV − Vε the functions within the square brackets in Eq.
(9) are continuous. In this way, again discarding the arbitrary constanth, the reciprocal theorem (9), applied to the surface
S − Sε that bounds the volumeV − Vε, becomes
∫

S

[φ(x)∇C(r) − C(r)∇φ(x)] · nidS +

∫

Sε

[φ(x)∇C(r) − C(r)∇φ(x)] · nidS = 0 (12)

Now, considering the integral overSε containing the singularityx0, with dSε = ε2dΩ; dΩ denotes the infinitesimal solid
angle. Based on the fundamental solution given in (10), the expressions for the potential monopoleC(r) and the potential
dipole∇C(r) insideSε are given by

C(r) ≈
1

ε
and ∇C(r) ≈ −

r

ε3
(13)

with the inwardly directed unit normal vector beingni = r/ε. Therefore, for the limitε → 0, one obtains

lim
ε→0

∫

Sε

C(r)∇φ(x) · nidS = lim
ε→0

∫

Sε

1

ε
∇φ(x) · niε

2dΩ = O(ε) → 0 and (14)

lim
ε→0

∫

Sε

φ(x)∇C(r) · nidS = − lim
ε→0

∫

Sε

φ(x)
1

ε2
ε2dΩ = −φ(x0). (15)

With the results (14) and (15), the Eq. (12) reduces to

φ(x0) = −

∫

S

[φ(x)∇C(r) − C(r)∇φ(x)] · ndS. (16)

By analogy with corresponding results in the theory of eletrostatics (Pozrikidis, 1992) and elastostatics (Jaswon and
Symm, 1977), the two integrals on the RHS of Eq. (16) are termed the single-layer and double-layer potentials. They
represent, respectively, a boundary distribution of the Green’s functionsC(r) and∇C(r), amounting to boundary distribu-
tions of magnetic point sources and magnetic point dipoles.
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4.3 Integral representation in terms of jump conditions

At this point, we present two situations related with the position of the singularity when we have two different fluids
separated by an interfaceS. Here,n is the unit outwardly directed normal to the drop surface and, again,n = −ni.

Singularity inside the external fluid domainV : According to the reciprocal theorem in (11) for the internal fluid φ′ (inside
the particle) with the pointx0 (singularity) exterior to the particle, we obtain
∫

S

[φ′(x)∇C(r) − C(r)∇φ′(x)] · ndS = 0. (17)

Now, applying Eq. (16) for the external fluid under an externally imposedφ∞(x0) and subtracting the Eq. (17) of it, one
obtains in terms of the jump conditionφ − φ′ and∇(φ − φ′) that

φ(x0) = φ∞(x0) −

∫

S

C(r)∇[φ(x) − φ′(x)] · ndS +

∫

S

[φ(x) − φ′(x)]∇C(r) · ndS. (18)

Singularity inside the internal fluid domainV ′: By the same procedure used to obtain (18), we determine the integral
representation for the internal fluid applying Eq. (16) as being

φ′(x0) = −

∫

S

[φ′(x)∇C(r) − C(r)∇φ′(x)] · ndS. (19)

In addition, using the reciprocal identity (11) for the external fluid φ (outside the particle) with a pointx0 that is located
in the interior of the particle and adding the result to Eq. (19) one obtains

φ′(x0) = φ∞(x0) −

∫

S

C(r)∇[φ(x) − φ′(x)] · ndS +

∫

S

[φ(x) − φ′(x)]∇C(r) · ndS. (20)

4.4 Integral representation for the interface

Now, we are interested in the solution of the magnetic potencial field at the interface, that may be found by the
application of the jump condition(1/2)[φ(x0) + φ′(x0)] to the Eqs. (18) and (20). Limitingx0 to the interface,φ(x0) =
φ′(x0), φ′(x) = φ(x) andµ∇φ(x) ·n = µ′∇φ′(x) ·n. Therefore, the integral representation for the interfaceS between
two magnetic materials is given by

φ(x0) = φ∞(x0) +

(

1 − α

α

)
∫

S

C(r)∇φ(x) · ndS. (21)

As beforeα = µ′/µ. The Eq. (20) represents the solution for each pointx0 at the interface as the summation of all
disturbance flows induced by the other points over the surface, located at pointx.

5. HYDRODYNAMIC BOUNDARY INTEGRAL FORMULATION

In this section, a boundary integral formulation for computing the Stokes flow of a magnetic drop is derived by solving
integral equations for functions that are evaluated over the boundaries. This formulation couples the integral equations for
the velocity and magnetic potential fields.

5.1 Reciprocal theorem for the flow of a magnetic fluid

Consider a closed region of fluidV bounded by a surfaceS. Then consider two unrelated incompressible flows of two
different magnetic fluids with densitiesρ andρ′, viscositiesη andη′, magnetic permeabilitiesµ andµ′ and stress fieldsσ
andσ′, respectively.

Flow 1: u, H , σ (ρ, η, µ). The balance equations for mass and momentum and the constitutive equation for a magnetic
fluid are respectively

∇ · u = 0, ∇ · σ = 0 and σ = −PI + 2ηD + µHH (22)

Here, locally,u is the Eulerian velocity,σ is the stress field andH is the magnetic field.I is the identity tensor,
D = (1/2)[∇u + (∇u)T ] is the rate of strain tensor. Again,P = ph + pm, whereph is the hidrodinamic pressure and
pm = (1/2)µ0H

2 is the magnetic pressure.
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Flow 2: u′, H ′, σ′ (ρ′, η′, µ′). In the same sense shown in Eq. (22), the balance equations for mass and momentum and
the constitutive equation for this flow are, respectively,

∇ · u′ = 0, ∇ · σ′ = 0 and σ = −P ′I + 2η′D′ + µ′H ′H ′ (23)

whereD′ = (1/2)[∇u′ + (∇u′)T ] andP ′ are the rate of strain tensor and the pressure field, respectively. Furthermore,
remind that the following tensorial operation for a incompressible fluid is valid,I : D = ∇·u = 0 andI : D′ = ∇·u′ =
0. Therefore, one may obtains

σ : D′ = 2ηD : D′ + µHH : D′ (24)

and, similarly,

σ′ : D = 2η′D′ : D + µ′H ′H ′ : D. (25)

The simmetry of bothD andD′ requires thatD : D′ = D′ : D. Using this argument, the Eq. (24) becomes

D : D′ = D′ : D =
1

2η
(σ : D′ − µHH : D′), (26)

and, substituting the result (26) into Eq. (25), we obtain

σ′ : D =
η′

η
σ : D′ − µ

(

η′

η
HH : D′ −

µ′

µ
H ′H ′ : D

)

(27)

It should be important to note that for superparamagnetic materialsµ0M × H = 0 (the magnetic torque). In this case,
the stress tensor is symmetric. In this way, using Cauchy’s equation given in Eq. (22), we may write

σ : D′ = σ : ∇u′ = ∇ · (u′ · σ) − u′ · (∇ · σ) = ∇ · (u′ · σ). (28)

Similarly, one may obtain that

σ′ : D = ∇ · (u · σ′). (29)

Thereafter, we can evaluate the termHH : D′. Note thatHH is a second rank symmetric tensor. Accordingly

HH : D′ = HH : ∇u′ = ∇ · (u′ · HH) − u′ · ∇ · (HH) (30)

but, using a vectorial identity, the magnetostatic regime balance equations∇×H = 0 and∇·B = 0 and the assumption
of a constant magnetic susceptibility∇ · H = 0. In this way, one obtains that

∇ · (HH) = H · ∇H + H(∇ · H) = ∇

(

H2

2

)

+ H × (∇× H) + H(∇ · H) = ∇

(

H2

2

)

. (31)

Then, substituting (31) into (30), one may obtain

HH : D′ = ∇ · (u′ · HH) − u′ · ∇

(

H2

2

)

. (32)

If the same steps are applied to the termH ′H ′ : D, it must reduces in an analogous fashion to

H ′H ′ : D = ∇ · (u · H ′H ′) − u · ∇

(

H ′2

2

)

. (33)

Now, substituting the results (28), (29), (32) and (33) intoEq. (27) and, after we determine

∇ · (u · σ′) =
η′

η
∇ · (u′ · σ) − µ

{

η′

η

[

∇ · (u′ · HH) − u′ · ∇

(

H2

2

)]

−

µ′

µ

[

∇ · (u · H ′H ′) − u · ∇

(

H ′2

2

)]}

. (34)

Finally, after making few algebraic manipulations, we obtain the expression for the generalized Lorentz reciprocal theorem
for a Stokes flow of a magnetic fluid

η∇ · (u · σ′) − η′∇ · (u′ · σ) = µ′η

[

∇ · (u · H ′H ′) − u · ∇

(

H ′2

2

)]

−

µη′

[

∇ · (u′ · HH) − u′ · ∇

(

H2

2

)]

. (35)
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5.2 Integral representation for a Stokes flow of a magnetic fluid

Consider the particular flow of interest with velocityu, magnetic fieldH and stress tensorσ. The known flow is the
one due to a point force with strengthf , and located at a pointx0. Suppose that the inertia of both fluids has a negligible
influence on the motion of the fluid elements, and by convenience takesη = η′, ρ = ρ′ andµ′ = 0. Flow 1 and flow 2 for
this particular situation are described as following.

Flow 1: u, H, σ. The equations for conservation of mass and momentum for theflow 1 and for the constitutive equation
are respectively

∇ · u = 0, ∇ · σ = 0, and σ = −PI + 2ηD + µHH. (36)

Flow 2: u′, σ′. The fundamental solution for Stokes equations correspondto the velocity and stress fields at a pointx

produced by a point forcef located atx0

∇ · u′ = 0, ∇ · σ′ = −fδ(x − x0), (37)

with |u′| → 0 and|σ′| → ∞ as|x| → ∞. The solution of such equations may be derived using Fouriertransforms

u′(x) =
f

8πη
· G(r); σ′(x) = −

3f

4π
· T (r), where G(r) =

I

r
+

rr

r3
and T (r) =

rrr

r5
(38)

are the stokesletG and the stressletT . The above functions are the kernels or the free-space Green’s functions that maps
the forcef atx0 to the fields atx in an unbounded three-dimensional domain. Herer = x−x0, andr = |r|. Physically,
u = G(r) · f expresses the velocity field due to a concentrated point force fδ(r) placed at the pointx0, and may be
seen as the flow produced by the slow settling motion of a smallparticle. Tijk is the stress tensor associated with the
Green’s functionGij andσik(x) = Tijkfj is a fundamental solution of the Stokes produced by the hydrodynamic dipole
D · ∇δ(r). In addition,Tijk = Tkji as required by symmetry of the stress tensorσ. Finally, substituting the expressions
of the point-force solution (38) into (35) and discarding the arbitrary constantf ones obtain

−
3

4π
∇ · [u(x) · T (r)] −

1

8πη
∇ · [G(r) · σ(x)] = −

µ

8πη

{

∇ · [G(r) · HH(x)] − G(r) · ∇

(

H2(x)

2

)}

. (39)

Now using for the second term on the RHS of Eq. (39) the incompressibility condition of the singular solution∇ ·G = 0

and the symmetry ofG tensor, so thatG(r) · ∇(H2/2) = ∇ · [G(r)(H2/2)], Eq. (39) becomes

−
3

4π
∇ · [u(x) · T (r)] −

1

8πη
∇ · [G(r) · σ(x)] = −

µ

8πη
∇ ·

{

G(r) ·

[

HH(x) −

(

H2(x)

2

)

I

]}

. (40)

The above equation is valid everywhere except at the singular point x0. Now, consider a material volume of fluidV
bounded by a singly or multiply connected surfaceS in order to evaluate the integration of Eq. (40). The surfaceS may
be composed of fluid surfaces, fluid interfaces or solid surfaces. There are two situations to be considered next.

Singularity outsideV : In this case, we select a pointx0 outsideV . Then, all terms of the reciprocal theorem are regular
throughoutV , and thus after integration of Eq. (40) the integral representation of the reciprocal theorem takes the form

−
3

4π

∫

V

∇ · [u(x) · T (r)]dV −
1

8πη

∫

V

∇ · [G(r) · σ(x)]dV =

−
µ

8πη

∫

V

∇ ·

{

G(r) ·

[

HH(x) −

(

H2(x)

2

)

I

]}

dV.

(41)

Besides, the volume integrals in Eq. (41) are converted to the surface integrals overS, by using the divergence theorem

−
1

8πη

∫

S

G(r) · σ(x) · n(x)dS −
3

4π

∫

S

u(x) · T (r) · n(x)dS+

µ

8πη

∫

S

G(r) ·

[

HH(x) −

(

H2(x)

2

)

I

]

· n(x)dS = 0,

(42)

wheren is the unit outward normal to the surfaceS. Eq. (42) is the integral representation of the flow if the singularity
is outsideV . It will be shown that the integral equation (42) is a useful identity for developing new integral equations in
terms of jump conditions on an interface.
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Singularity insideV : Similar to the analysis developed in Sec. §4.2 , if exists a singularity located atx0 into V , it is
needed to be excluded of our integration step. In order to make this integration, we define a small spherical volumeVε of
radiusε centered atx0, as shown in Fig. (2). In addition, the functions into Eq. (9)are regular throughout the reduced
volumeV −Vε. Then, integrating the Eq. (9) overV −Vε and converting the volume integral into a surface integral using
the divergence theorem, gives

−
1

8πη

∫

S,Sε

G(r) · σ(x) · ni(x)dS −
3

4π

∫

S,Sε

u(x) · T (r) · ni(x)dS+

µ

8πη

∫

S,Sε

G(r) ·

[

HH(x) −

(

H2(x)

2

)

I

]

· ni(x)dS = 0,

(43)

whereSε is the spherical surface enclosingVε, as indicated in Fig. (2). Letting the radiusε tends to zero we obtain the
following expressions for the leading order terms inε for the tensorsG andT , namely

G(r) ≈
I

ε
+

rr

ε3
; T (r) ≈

rrr

ε5
. (44)

Over Sε, ni = r/ε anddS = ε2dΩ, where, as defined before,Ω is the differential solid angle. Substituting these
expressions along with Eq. (43) and taking the limitε → 0 we obtain

lim
ε→0

∫

Sε

G(ε) · σ(x) · ni(x)dS = lim
ε→0

∫

Sε

(

I

ε
+

rr

ε3

)

· σ(x) · ni(x)ε2dΩ = O(ε) → 0. (45)

As ε → 0, the values ofu, H andσ tend to their corresponding values at the center ofVε, i.e. tou(x0), H(x0) and
σ(x0), respectively. By analogy the following term tends to zero in the limit ε → 0 decreasing linearly inε

lim
ε→0

∫

Sε

G(r) ·

[

HH(x) −

(

H2(x)

2

)

I

]

· ni(x)ε2dΩ = O(ε) → 0. (46)

Also, the contribution of the velocity can be evaluated. Thus, in the limitε → 0, we have

lim
ε→0

∫

Sε

u(x) · T (r) · ni(x)dS = lim
ε→0

∫

Sε

u(x) ·
(rrr

ε5

)

· ni(x)dS =
u(x0)

ε4
·

∫

Sε

rrdS =
4π

3
u(x0). (47)

Then, substituting the results (45-47) into Eq. (43), it gives

u(x0) =
1

8πη

∫

S

G(r) · σ(x) · n(x)dS +
3

4π

∫

S

u(x) · T (r) · n(x)dS−

µ

8πη

∫

S

G(r) ·

[

HH(x) −

(

H2(x)

2

)

I

]

· n(x)dS.

(48)

Eq. (48) is the integral representation for the Stokes flow ofa magnetic fluid in terms of boundary distributions involving
the Green’s functionsG and the stressletT . The first distribution on the RHS of (48) is termed the single-layer potential,
the second distribution is termed the double-layer potential. Both integrals have already appeared in three-dimensional
boundary integral formulations of non-magnetic fluids. Thelast integral however represents an extra single-layer potential
contribution by the fact that the fluid is polar.

5.3 Integral representation in terms of the traction jump

Singularity inside the external fluid domainV : Using the reciprocal identity (42) for the internal flowu′ (inside the
particle) with the pointx0 located exterior to the particle, one obtain

−
1

8πη

∫

S

G(r) · σ′(x) · n(x)dS −
3λ

4π

∫

S

u′(x) · T (r) · n(x)dS+

αµ

8πη

∫

S

G(r) ·

[

H ′H ′(x) −

(

H ′2(x)

2

)

I

]

· n(x)dS = 0,

(49)

where, as defined before,λ = η′/η andα = µ′/µ. Now, applying Eq. (48) for the external flow subject to an ambient
flow u∞(x0), and combining the result with Eq. (49), the integral representation is obtained as a function of the traction
jump∆t(x) = [σ(x) − σ′(x)] · n(x),

u(x0) = u∞(x0) −
1

8πη

∫

S

G(r) · ∆t(x)dS −
3

4π

∫

S

[u(x) − λu′(x)] · T (r) · n(x)dS+

µ

8πη

∫

S

G(r) ·

{[

HH(x) −

(

H2(x)

2

)

I

]

− α

[

H ′H ′(x) −

(

H ′2(x)

2

)

I

]}

· n(x)dS.

(50)
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Singularity inside the internal fluid domainV ′: We repeat the above procedure for the internal flow. Hence, the integral
representation of the internal flow is obtained when Eq. (48)is applied,

u′(x0) =
1

8πλη

∫

S

G(r) · σ′(x) · n(x)dS +
3

4π

∫

S

u′(x) · T (r) · n(x)dS−

αµ

8πλη

∫

S

G(r) ·

[

H ′H ′(x) −

(

H ′2(x)

2

)

I

]

· n(x)dS.

(51)

Again, using the reciprocal identity (40) for the external flow u (outside the particle) with the singularityx0 located in
the interior of the particle and combining its result with (51) results

λu′(x0) = u∞(x0) −
1

8πη

∫

S

G(r) · ∆t(x)dS −
3

4π

∫

S

[u(x) − λu′(x)] · T (r) · n(x)dS+

µ

8πη

∫

S

G(r) ·

{[

HH(x) −

(

H2(x)

2

)

I

]

− α

[

H ′H ′(x) −

(

H ′2(x)

2

)

I

]}

· n(x)dS.

(52)

5.4 Integral representation for the interface

The integral representation for the flow solution at the interface is found by applying the jump condition(1/2)[u(x0)+
λu′(x0)] to the Eqs. (50) and (52). For the limit ofx0 going to the interface,u(x0) = u′(x0) (continuity of velocity),
Ht = H ′

t (continuity of tangential component of magnetic field),µHn = µ′H ′

n (continuity of normal components of
magnetic induction) and the traction discontinuity∆t is given by the Eq. (6). Under these conditions only the integral
representation for the fluid-fluid interfaceS need to be considered, hence

(1 + λ)u′(x0) = 2u∞(x0) −
1

4πη

∫

S

Γ(∇s · n)G(r) · n(x)dS −
3

2π
(1 − λ)

∫

S

u(x) · T (r) · n(x)dS +

µ(1 − α)

4πη

∫

S

G(r) ·

{[

HtHt(x) −

(

H2
t (x)

2

)

I

]

−
1

α

[

HnHn(x) −

(

H2
n(x)

2

)

I

]}

· n(x)dS. (53)

where the vector fieldHn = (H · n)n andHt = H · (I − nn).

5.5 Dimensionless integral representation

All quantities above are made dimensionless using the undisturbed drop sizea, the relaxation rateΓ/µa and a char-
acteristic magnetic fieldH0. The following dimensionless quantities̃G(r̃) = aG(r), ũ = (η/Γ)u, T̃ (r̃) = a2T (r) and
H̃ = (H/H0). In this manner, we can make dimensionless the Eq. (53). Then, one may obtain

ũ(x̃0) =
2ũ∞(x̃0)

(1 + λ)
−

1

4π(1 + λ)

∫

S

(∇̃s · n)G̃(r̃) · n(x̃)d̃S −
3

2π

(1 − λ)

(1 + λ)

∫

S

ũ(x̃) · T̃ (r̃) · n(x̃)d̃S + (54)

Cam(1 − α)

4π(1 + λ)

∫

S

G̃(r̃) ·

{[

H̃tH̃t(x̃) −

(

H̃2

t (x̃)

2

)

I

]

−
1

α

[

H̃nH̃n(x̃) −

(

H̃2

n(x̃)

2

)

I

]}

· n(x̃)d̃S. (55)

For linear shearing motions,̃u∞(x̃0) = Ca(Ẽ
∞

+ W̃
∞

) · x̃, with Ca = γ̇ηa/Γ being the capillary number, that
represents the ratio of viscous to surface tension stress. In addition,Cam = µH2

0
a/Γ is the magnetic capillary number,

that represents the ratio of magnetic stresses to surface tension stress. Note that our magnetic capillary number is defined
as a function of the magnetic permeability of the drop fluid.

6. Final Remarks

Equations (21) and (55) are considered the key results of thecoupled magnetic-hydrodynamic boundary integral
formulation presented here. The analysis described in thispaper will be used in a future work to investigate by numerical
simulation the full time-dependent low Reynolds number problem for three-dimensional ferrofluid droplet deformation
under the action of shearing motion and magnetic fields, and thereby infer some key properties of flowing magnetic
emulsions, when the viscosity ratio and the magnetic permeability ratio of the two phases are not necessarilyO(1).
The hydrodynamic integral representation coupled with themagnetic potential integral will determine the drop shape
evolution. The mathematical formulation developed here may be extended in a straightforward manner to the problem with
multiple polydisperse drops, for the case of general shear flows in the presence of magnetic field where no experimental
studies of drop shape evolution are at present available.
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