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Abstract. The development of a one-dimensional (planar) material 
thermal response with ablation is presented. The mixture energy 
equation, under uniform heat conduction is solved with Fourier’s 
law to model heat conduction, and the ideal gas law to model the 
state of the pyrolysis gases. Consequently, the temperature, profile 
is predicted for a decomposing ablator. The control volume finite 
element spatial discretization method (CVFEM), the Euler implicit 
time integrator, and a contracting grid scheme are used for the 
solution of the mixture energy equation. The mixture energy 
equation is solved using segregated Newton solvers, which allow 
for nonlinear iteration on the entire system of nodal equations that 
are discretized according to a residual formulation. The block 
Gauss-Seidel segregated solution procedure has been implemented 
to globally iterate on the system of governing equations resulting in 
a fully coupled solution.
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Nomenclature

 A          Area
 A           Area vector
 h          Specific enthalpy
�E                    Energy content

.
''m           Mass flux

.
'''m          Volumetric mass source term

.
''q          Heat flux

.
''q          Heat flux vector



M


               Molecular weight

s                       Surface recession
.

s                      Surface recession rate
(e)                    Element
T                      Temperature
 t                       Time
z                       Coordinate with respect to initial ablation front

.

z                      Nodal velocity

Greek symbols

                      Initial resin volume fraction
η                       Landau coordinate
ξ                       Local coordinate
                     Reaction order in Arrhenius relationship

ρ                       Density

Subscripts

i                      Composite component index
c          Char
cv                   Control volume
s          Solid
v                     Virgin plastic
g         Gas

Superscripts

n                    Time level
v                     Iteration level



1. Introduction
Ablation has been defined as self regulating heat and mass transfer 

process in which incident thermal energy is expended by sacrificial loss of 
material. 

Charring ablators provide the most efficient TPS for aerospace 
applications. These are being processed by the method of synthetic assembly 
of resin binder and a refractory reinforcement in order to obtain certain 
special characteristics and properties. The char is a thermal insulation, the
interior of which is cooled by volatile material percolating through it from 
decomposing polymer (Figure.1). A thick char provides an efficient 
insulation barrier, reradiates a large amount of incoming heat from the 
surface, and is a very efficient ablator. Very good char strength has been 
obtained with carbon phenolic TPS materials.

Figure 1.Heat transfer mechanism of charring ablators under hot flow

1.1 Literature Review
Aerotherm Corporation, one of NASA’s contractors developed 

Charring Materials Ablation (CMA), and it has served as the industry 
standard for several decades. CMA is a one-dimensional material thermal 
response code with in-depth decomposition that solves the energy equation 
with pyrolysis gas effects. One of the primary physical assumptions that the
developers, Moyer and Rindal [9], made was that for a given time step, the 
pyrolysis gas generated further in-depth than a given node was assumed to 
flow pass that node during the time step. In terms of numerics, CMA has a 
finite difference spatial discretization of the governing differential equations 
and the Euler implicit time integrator. Moyer and Rindal implemented a 
translating grid scheme in which the grid is attached to the receding surface 
and the overall number of nodes in the domain is reduced as mass is 
removed at the ablating surface. Since the energy equation is nonlinear in 
both surface recession rate and temperature, a linearization method is 
necessary to find a solution. Moyer and Rindal accomplished this by lagging 
the thermo-physical properties and surface recession rate one time step for 
the interior node equations while they iteratively solve the surface energy 
balance to find the updated recession rate.



Recently J.L.Lin, C.S.Yang [5] presented experimental and 
numerical work under the aerodynamic heating of charring ablators. The 
experiment model is a stainless steel cone with an attached charring ablator, 
in which supersonic hot flow impinges and the numerical simulation is 
based on physical and mathematical models including one dimensional 
unsteady energy transport and mass conservation equations coupled with 
calculations of aerodynamic heating, thermal degradation, heat transfer of 
the ablating surface and the ablation model. The findings from the numerical 
calculations are time history of temperature distribution inside the charring 
material and the backup structure
1.2 Present work

The study is focused to obtain the temperature profile for the 
effective design of the back-up structure under the assumption of steady 
state conduction, in finite volume method considering the effect variations 
in material and thermo-physical properties.
2. Mathematical modeling

Under the assumptions that the pyrolysis gas is a single non-
reactive entity, the solid and gas are in thermal equilibrium, and there is no 
in-depth energy source, then the solid and gas energy equations for a 
moving grid reduce to a mixture energy equation given by
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2.1. Boundary conditions
Arrays of boundary conditions for the mixture energy equation are 

studied and the most commonly used for engineering applications are 
convective aerodynamic heating and radiation. Assuming equal species 
diffusion coefficients and equal mass and heat transfer Stanton numbers, the 
aerodynamic heating/radiation boundary condition with ablative and 
pyrolysis gas flux energy terms is given by
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where hoh CC is an empirical Stanton number correction for mass 

blowing and hot wall effects. The wall gas enthalpy  wh is defined as the 

enthalpy resulting from equilibrated reactions between ablation products, 
pyrolysis gases being injected into the boundary layer, and boundary layer 
gases from the surrounding environment.
2.2 Material Model

In order to complete the explanation of the governing equations 
and boundary conditions, it is important to understand the material model 
used to characterize the state of the solid/gas mixture. It is assumed that all 
the pores are interconnected, and therefore pyrolysis gases occupy all of the 



pore space and are free to flow through it. Consequently, the density of the 
solid/gas mixture is described by
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In terms of units Eq.3 can be expressed as
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It is assumed that the thermodynamic state of the pyrolysis gases 
can be described by the perfect gas law, and that the solid and gas phases are 
in thermal equilibrium resulting in
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where
Tg = Ts = T

The solid material model adopted in this study is similar to [9, 13] solid bulk 
density is given by
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The reaction is irreversible, and the pyrolysis gases are assumed to 

not react among them or with the remaining solid in the pore space. Taking 
the temporal derivative of Eq. (6) gives the solid decomposition rate in 
terms of component decomposition rates.
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It is assumed that the decomposition of each component can be described by 
an Arrhenius relationship of the form
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which applies at a constant spatial location.
The intermediate solid is modeled as some interpolated state 

between virgin and char. This interpolated state is characterized by the 
extent of reaction (β), or degree of char, given by
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2.3. Property Model
Discussions of properties are required for the solution of governing 

equation therefore thermo-physical and thermodynamic properties which are 
input parameters are given in the following table.

Table 1: Thermo-physical and thermodynamic property input 
parameters

Input parameter Description

( )
vvC T Specific heat of virgin material Vs. Temp

( )
cvC T Specific heat of char material Vs. Temp

Tref Reference temp. for  heat of formation

 o
f v

h Virgin plastic heat of formation

 o
f c

h Char heat of formation

 o
f g

h Pyrolysis gas heat of formation

( )vk T Thermal conductivity of the virgin material Vs. Temp

( )ck T Thermal conductivity of the char material Vs. Temp

( )c T Emissivity of virgin material Vs.Temp

( )v T Emissivity of char material Vs. Temp

( )gh T Pyrolysis gas enthalpy Vs. Temp

� ( )gM T Pyrolysis gas molecular weight Vs. Temp

( )  Porosity Vs. Extent of reaction

( )  Permeability Vs. Extent of reaction

( )T Pyrolysis gas dynamic viscosity Vs. Extent of 
reaction

2.4 Specific Internal Energy and Gas Enthalpy Models
The specific internal energy of the mixture will take into account 

both the solid and gas phases. The solid specific internal energy and 
enthalpy can be found from
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where ( )ve T  and ( )ce T  are determined by parabolic interpolation in the 

virgin and char specific internal energy tables and also provide details 
regarding parabolic interpolation routine.



2.4.1Specific Internal Energy and Gas Enthalpy Table Generation
Through integration of the tabulated specific heat functions, 

specific internal energy tables can be generated for the virgin and char. The 
code requires an input reference temperature, Tref, that will serve as the 
"zero" datum for both the specific internal energy functions and the 
pyrolysis gas specific enthalpy table. It is important to note that although the 
pyrolysis gas specific enthalpy is a function of pressure and temperature, it 
is assumed that there is weak pressure dependence, and therefore the gas 
enthalpy is a function of temperature only. 
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so that the enthalpy at the reference temperature is consistent with the solid 
internal energy tables.
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2.5. Domain Description and Discretization Method
Before discussing the discretization of the governing equations and 

their respective solution procedures, it is necessary to provide a description 
of the coordinate systems, grid motion scheme, and spatial discretization 
method. The method uses the following grid generation:
1. Automatic non-uniform grid generation with a geometric progression 
based on domain length, number of elements specified, and either first or 
last element thickness where

1j

j

z

z



and

1j j jz z z  
2.5.1 Spatial Discretization and Coordinate System

The control volume finite element method, which has been 
previously used for ablation problems [1, 15], associates a control volume 
with each node in the discretized domain. The method uses the co-ordinate 
system used in [15] to describe the surface recession with grid velocity.
3. Mixture Energy Equation

The mixture energy conservation equation
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. . . 0g g g cs

cs cs cs cv

d
q dA h v dA hv dA edV

dt
        

where the discretization of each term is discussed in the subsequent sections. 
For both the mixture energy and gas mass conservation equations, a 
consistent sign convention is adopted such that



[Outflow terms] − [inflow terms] + [rate of change of content] = [source 
terms]

Therefore energy equation becomes
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and the energy balance terms can be seen in figure.2 Section 2.3  presented 
the model for determining thermo-physical and thermodynamic properties 
of the gas, solid, and mixture that are necessary for the solution of the 
mixture energy equation.

While solving the mixture energy equation, nodal temperatures and 
the surface recession rate are treated as the dependent variables while nodal 
values of solid density, gas density, and gas velocity are constant.

Figure 2: Energy balance terms for the control volume surrounding 
node j

The linear system, for the five node domain, is of the form in which 
there is non linear dependence on surface recession rate
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3.1. Conduction
Fourier’s law is used to model the heat conducted at a control 

volume boundary and the heat conduction rate is given by
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representation of heat conduction is
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In general, the heat conduction vector is a nonlinear function of 

temperature and recession rate since the thermal conductivity depends on 

temperature and jz  depends on the surface recession rate. Therefore an 

iterative solution procedure is necessary to solve for the time accurate 
nonlinearities. To aid in the iterative process, it is convenient to linearize the 
element conduction vector with a Taylor series expansion in iteration space 
treating the nodal temperatures and surface recession rate as the independent 
variables
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Performing the required differentiation for planar geometry (A (z) = 1) gives
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3.2 Energy Content and Time Integration
The energy content for an element can be divided into terms 

corresponding to each of the two sub-control volumes within an element.
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The internal energy per unit volume in Eq. (20) can be expressed by a 
Taylor series expansion in position about the element center
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The elemental energy content vector can now be expressed as
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To aid in the integration process it is convenient to employ a local 
coordinate system in which the shape functions within an element are 
written as
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, the energy 

capacitance terms can be rewritten in terms of local coordinates as 
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Performing the integration for planar geometry (A(ξ) = 1) gives
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The result is simply a weighted average of nodal values where the 
weighting factor matrix is geometry dependent. The time rate of change of 
energy content according to an implicit time integrator can be expressed as
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and linearizing in iteration space according to a Taylor series expansion 
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where the sensitivity matrix entries are
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The resulting linear system contributions for each jth element are
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3. RESULTS AND DISCUSSION
Assuming conduction and uniform heat flux distribution along the 

thickness will eliminate the convection and gas flux terms in the energy 
equation considering constant property, non-ablating, non-decomposing, 
one-dimensional, uniform density, planar slab with a specified constant heat 

….. (31)
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flux on the front face and an adiabatic back face. The governing equation, 
parameters associated with this problem are:

''.

. 0........(32)
cs cv

d
q dA edV

dt
  

Table 2. Conduction problem parameters

T = 3500K
".

q = 18.8MW/m2

  = 1369 kg/m2

k  =  4 W/m2K

vC = 651.24 J/kg K

The problem here is a linear convergence problem which 
undergoes iterative process to obtain the temperature distribution in the 
ablator.

Figure.3.Temperature profile
4. Conclusions
The method gives the acceptable temperature variation, showing less 
gradient in the charring zone and a step gradient in the decomposing zone 
where the density gradient does exists prompting the heat transfer towards 
the virgin zone but the constant temperature in the region protects the back-
up structure from the heat transfer ensuring the safety of the system.
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