
Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

THE INFLUENCE OF SOIL DAMPING MECHANISMS AND GEO-PROFILES 
ON THE STATIONARY RESPONSE OF 3D RIGID BLOCK FOUNDATIONS 

 
Ronaldo Carrion, rcarrion@sorocaba.unesp.br 
Curso de Engenharia de Controle e Automação, UNESP, Campus de Sorocaba 
 
Amilcar D. O. Sousa, amilcar@fem.unicamp.br 
Departamento de Mecânica Computacional, Faculdade de Engenharia Mecânica, UNICAMP 
 
Euclides Mesquita Neto, euclides@fem.unicamp.br 
Departamento de Mecânica Computacional, Faculdade de Engenharia Mecânica, UNICAMP 
 
 

Abstract. The article addresses the stationary dynamic response of three-dimensional rigid block foundations 
interacting with distinct soil profiles. Dynamic compliance matrices for rigid and massless foundations interacting with 
a half-space, a horizontal layer and a non-horizontal layer are reported. A direct version of the Boundary Element 
Method is applied to synthesize the soil response. A sample of compliance functions for complex soil profiles are 
furnished. The soil profile and the foundation arrangement determine the structure of the compliance matrix. For half-
spaces and horizontal layers the vertical degree of freedom is uncoupled from the other DOFs. For non-horizontal 
layers the compliance matrix is full, coupling all foundation DOFs in the plane of analysis. The presence of a layer with 
finite dimensions introduces resonances, which are noticeable in the compliance matrices and in the frequency 
response functions of the block foundations. The layer rigid bottom changes dramatically the foundation response, 
when compared to foundations interacting with homogenous half-spaces. For half-spaces the geometric damping 
mechanism plays the dominant role. Material damping has a secondary effect in the dynamic response of rigid 
structures interacting with half-spaces. 
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1. INTRODUCTION 
 
The present article addresses the dynamic response of a block foundation interacting with the supporting soil. Harmonic 
time behavior is considered leading to a stationary response. Both the foundation and the soil model are three-
dimensional. The block foundation is considered rigid. The soil is a linear, isotropic and homogeneous media. Material 
or internal damping is also introduced in the soil by means of the elastic-viscoelastic correspondence principle 
[Christensen, 1982]. Distinct soil profiles are considered: the homogeneous half-space, a horizontal layer over a rigid 
bedrock and a non-horizontal layer also over a rigid bottom. As the soil profiles present at least one unlimited 
dimension, waves that are generated at the soil-block foundation interface propagate without reflection, withdrawing 
energy from the system. This damping mechanism is known as geometric damping and the mathematical expression 
describing this mechanism is the Sommerfeld radiation condition [Sommerfeld, 1949, Hall&Olivetto, 2003]. So in the 
present analysis both damping mechanisms, material and geometric, are present. The internal damping is considered 
hysteretic with a frequency independent coefficient [Findley, 1989]. 
 
The soil dynamic response is given in terms of a dynamic compliance matrix. This dynamic compliance matrix 
describes the response of a rigid and massless foundation interacting with the prescribed soil profile [Gazetas 1983, 
Hall&Olivetto 2003]. The compliance matrices for the present article were obtained by a direct version of the Boundary 
Element Method (DBEM) based on the work of Carrion (2002). Surface and embedded foundations are considered. 
 
Although the complete system, foundation and soil, are three-dimensional, the analysis presented in this article, that is, 
the excitations and the determined degrees of freedom, are restricted to a plane transversal to the soil horizontal free 
surface. The equations of motion of the soil-foundation system, presents a structure with several non-diagonal elements. 
These off-diagonal elements represent a coupling of the system degrees of freedom.  
 
2. EQUATIONS OF MOTION OF THE SOIL-FOUNDATION SYSTEM 
 
Figure 1 shows the plane (x-z) with a scheme for a rigid foundation embedded in a layer over a rigid bottom. The rigid 
foundation has dimensions (2a x 2b x hF) with mass mF. The vertical distance between the foundation mass center and 
the origin of the coordinate system (x,y,z) is given by hG. The external excitation vector 

{ } { }T
E Z X Y Z X YF F F F M M M=  is applied at a distance hB from the foundation mass center. The foundation 

embedment ratio is E. The response of the rigid and massless foundation is given with respect to the origin of the 



coordinate system, shown in Fig. 2. With respect to this point the vector of the soil excitation is 

{ } { }TS S S S S S S
Z X Y Z X YF F F F M M M=  and the vector containing the rigid foundation degrees of freedom is 

{ } { }TS S S S S S S
Z X Y Z X YU U U U= Φ Φ Φ . 

 
The equations of motion of the soil-foundation system excited by a circular frequency ω , considering only the degrees 
of freedom in the (x-z) plane, is given by [Sousa, 2007]: 
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In Eq. (1) G represents the shear modulus of the soil and a the half-width of the foundation. The terms Sij are the 
elements of the soil compliance matrix. The synthesis of these functions will be addressed in the next section. 
 

 

 
 
 
 

 
Figure 1: Scheme for a rigid block foundation embedded in 

an horizontal layer resting on a rigid bottom 
Figure 2: Excitations and degrees of freedom for a rigid 

and massless foundation 
 
 

3. BOUNDARY ELEMENT SYNTHESIS OF THE RIGID FOUNDATION COMPLIANCE MATRIX 
 

This section reports the synthesis of the dynamic compliance matrices for rigid and massless foundations. Inertia 
properties of the block foundations are incorporated through Eq. (1). The direct version of the Boundary Element 
Method (DBEM) is used to model and solve the stationary dynamic soil-structure interaction problem [Carrion 2002, 
Dominguez 1995]. The soil, discretized by the BEM, leads to the system of linear algebraic equations, that in matrix 
form may be expressed as: 
 

ij j ij jH u G t=   (2) 

 
In Eq. (2) Hij and Gij are the influence matrices resulting from the numerical integration over the area of each 

Boundary Element of the fundamental solutions *
ijt  e *

iju  multiplied by the interpolation functions and the proper 

Jacobian [Carrion 2002, Dominguez 1995]. Dividing the discretized soil boundary into nodes pertaining to the soil 
foundation interface { }fu  and the remaining nodes { }su , the matrix Eq. (2) may be expanded to yield: 

 

ff fs ff fsf f

sf ss sf sss s

H H G Gu t
H H G Gu t
� � � �� � � �

=� 
 � 

 � 
 �
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  (3) 
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After the matrices Hij and Gij have been synthesized, rigid body kinematics compatibility restrictions [ ]CC  may be 

applied between the nodes of the soil foundation interface { }fu  and the vector of the rigid foundation degrees of 

freedom { }SU . Analogously, equilibrium equations [ ]EQ  may be applied between the tractions at the nodes of the soil 

foundation interface { }ft  and the vector of the external excitation { }SF  leading to [Carrion, 2002]: 

 

{ } [ ]{ }S
fu CC U=  and { } [ ]{ }S

fF EQ t=   (4) 

 
To synthesize the rigid and massless foundation dynamic compliance matrix, additional boundary conditions must 

be prescribed. Usually it is assumed that the tractions at the soil free surface vanish { } { }0st = . Under these 

assumptions, Eqs. (3) and (4) may be combined to yield: 
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Equation (5) may be used to synthesize a stationary frequency dependent compliance matrix ( )N ω� �� � for the rigid 

foundation, relating the foundation degrees of freedom (DOF) { }SU  to the vector containing external forces applied at 

the foundation { }SF : 

 

{ } ( ) { }1S SU N F
Ga

ω= � �� �   (6) 

 
The rows of matrix [ ]N  may be obtained from the solution { }SU  of Eq. (5) for a sequence of unit values for the 

distinct components of the load vector { }SF . This procedure furnishes the structure as well as the frequency content of 

the compliance matrix elements. Equation (7) furnishes the resulting compliance matrix [N] and the impedance [S] = 
[N]-1 for the excitations and degrees of freedom in the plane (x-z): 

 

1
S S
Z UzFz UzFx UzMy Z
S S
x UxFz UxFx UxMy x
S S
y yFz yFx yMy y

U N N N F

U N N N F
Ga

N N N MΦ Φ Φ

� � � �� �
	 	 	 	
 �=� 
 � 

 �
	 	 	 	
 �Φ � �� � � �

 and 

S S
Z UzFz UzFx UzMy Z
S S

x UxFz UxFx UxMy x
S S
y yFz yFx yMy y

F S S S U

F Ga S S S U

M S S SΦ Φ Φ

� � � �� �
	 	 	 	
 �=� 
 � 

 �
	 	 	 	
 � Φ� �� � � �

 (7) 

 
The structure of the compliance matrix (7) depends on the soil profile and on the geometry of the foundation. It can 

be shown that for surface foundations (E = 0) and smooth contact conditions at the soil-foundation interface, the 
compliance and the impedance matrix are diagonal, presenting no coupling of the foundation DOFs.  

 
4. STRUCTURE AND FREQUENCY CONTENT OF THE COMPLIANCE MATRICES 

 
In this section both the structure of the impedance matrix and the frequency content of its elements will be 

addressed. Three distinct soil profiles are described, namely, the half-space, a layer over horizontal rigid bottom and a 
layer over inclined rigid bedrock. Constant rectangular elements were used throughout the present BE study. Spatially 
homogeneous and non-homogeneous meshes are used. 

 



4.1. Half-Space. Initially, the compliance matrices for the half-space are reported. Surface and embedded foundations 
are considered. For surface foundations E=0 and for the embedded foundations E = a. For all simulations considered  
the soil free surface was discretized within the range 5x a≤  and 5y a≤ . The number of elements at the soil 

foundation interface is given by fn  and the number of elements for the remaining of the mesh is sn . The meshes for the 

half-space soil profile are shown in Figs. 3 and 4. The structure of the compliance matrix [N] for both surface or 
embedded foundations interacting with the half-space is given by: 
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144fn = , 784sn =  

 
612fn = , 972sn =  

Figure 3: Half-space mesh for surface foundation Figure 4 Half-space mesh for embedded foundation 
 
The real and imaginary part of the off-diagonal compliance functions for the surface and for the embedded 

foundations are furnished in Figs. 5 and 6, respectively. The constitutive parameters used in the numerical synthesis are 
a = 1m, G = 1N/m2, ν  = 0.25, sρ  = 1kg/m3 and the hysteretic damping coefficient η  = 0.05. The dimensionless 
frequency parameter A0 is defined as A0 = / sa cω  with cs being the shear wave velocity of the elastic soil. 
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Figure 5: Off-diagonal compliance functions for the rigid 
surface foundation over the half-space 

Figure 6: Off-diagonal compliance functions for the rigid 
foundation embedded in the half-space 

 
The diagonal elements of the same foundation arrangement are given, respectively, in Figs 7 and 8 for surface and 

embedded foundations. In both cases are used hysteretic damping coefficient η  = 0.00 and η  = 0.05.It can be clearly 
recognized that the embedment increases the rigidity (impedance of the rigid foundation). 
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Figure 7: Compliance functions for the rigid surface 
foundation over the half-space 

Figure 8: Compliance functions for the rigid foundation 
embedded in the half-space 

 
4.2. Soil Layer over horizontal rigid bottom. The second set of compliance functions synthesized for the present 
study is a horizontal layer with depth H = 5a (see Fig. 1). The present stydy shows that the structure of the compliance 
matrices for the structures over or embedded in the layer are similar to that exhibited in Eq. (8). Figs. 9 and 10 show the 
meshes used to obtain the compliances (and/or the rigidities). 
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Figure 9: Mesh for surface foundation over a layer with 
rigid horizontal bottom 

Figure 10 Mesh for foundation embedded in a layer with 
rigid horizontal bottom 

 
The real and imaginary parts of the off-diagonal compliance functions for the foundation on the surface and 

embedded in the horizontal layer can be seen in Figs. 11 and 12 respectively. Analogously, the diagonal elements of 
these compliance matrices are given in Figs. 13 and 14, for the surface and embedded foundations. Comparing the 
results presented in Figs. 5 and 6 for the half-space with Figs. 13 and 14 obtained for the horizontal layer, it is clear that 
the limited dimension of the layer depth causes resonances, which are clearly visible in the compliances. 
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Figure 11: Off-diagonal compliance functions for the rigid 
surface foundation over a layer on horizontal bottom 

Figure 12: Off-diagonal compliance functions for the rigid 
foundation embedded in a layer on horizontal bottom 

 
4.3. Soil Layer over a non-horizontal rigid bottom. One of the important issues being addressed in the current study 
is the dynamic response of foundations interacting with layers that do not present a horizontal rigid bottom. Figure 15 
shows, schematically a layer resting on an inclined bottom. The inclination is parallel to the y-axis. The initial layer 
depth is H1 = 5a and the final depth is H2 = 6a. The inclination length is Lc = 2a. The remaining parameters are those 
used in the previous calculations. Figure 16 presents the BE mesh for the embedded foundation interacting with the 
non-horizontal soil layer. A similar mesh has also been created for the surface foundation. 

The inclined bottom changes dramatically the structure of the compliance matrix. For this case the structure is equal 
to the one presented in Eq. (7). This matrix with a full structure expresses the fact that all foundation DOFs in the plane 
(x-z) are coupled. Figure 17 shows the elements of the first column of the compliance matrix for a foundation embedded 
in a non-horizontal soil layer. 
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Figure 13: Compliance functions for the rigid surface 
foundation over a layer on horizontal bottom 

Figure 14: Compliance functions for the rigid foundation 
embedded in a layer on horizontal bottom 
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Figure 15: Scheme for foundation interacting with a non-
horizontal soil layer. 

Figure 16: BE mesh for embedded foundation in a non-
horizontal soil layer. 
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Figure 17: Vertical compliance functions for a foundation embedded within a non-horizontal soil layer 
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5. STATIONARY DYNAMIC RESPONSE OF ROTORS AND FOUNDATION INTERACTING WITH SOIL 
 
In this section a sample of numerical results for the dynamic response of the rigid block foundation is presented. 
 

5.1. Surface block foundation on the half-space. 
 
Figure 18 shows the vertical response S

ZU  of a square block foundation (2a x 2a) resting on the surface of a 

viscoelastic half-space, E = 0. The block foundation is excited vertically, 1S
ZF = [N]. The compliance functions for this 

foundation are given in Figs. 5 and 7a to 7c. It is assumed that the whole foundation mass shrinks to a single plane, 
coincident to the rigid surface foundation plane. That is: hB = hG = 0 (see Fig. 1). The foundation mass is equal 1.25 
times the soil mass with the same volume [Sousa, 2007]. To access the role of the geometric and material damping, 
initially the foundation response is determined by modelling the soil as a simple static spring. The value of the static 
vertical spring is equal to the static value of the real component of UzFzN  taken from Fig. 7a. In the sequence, complex 
vertical compliance functions UzFzN  for distinct value of the soil-damping coefficient Sη  are considered: 

(0.0; 0.01; 0.05; 0.20)Sη = . The response in figure 18 shows clearly that when no geometric damping is present (static 
spring case), the foundation experiences a large displacement resonance. On the other hand the introduction of the soil 
dynamic response by means of the complex compliance functions, damps the system in a very strong way. The role of 
the internal damping coefficient is almost negligible compared to the role of the geometric damping. If this behavior 
will be reproduced in other soil profiles, is an issue that deserves further investigation. 

 

 
Figure 18: Vertical response of a block foundation over half-space considering distinct damping mechanisms 

 
5.2. Embedded  foundation on a horizontal layer . 

 
Figure 19a shows the horizontal response S

XU  of an embedded foundation (E = a) due to a horizontal excitation 
S

XF  for the 3 distinct types of soil profiles, the half space, the horizontal layer and the non-horizontal layer. Figure 19b 

shows the rotation DOF S
YΦ  due to the same horizontal excitation. The foundation has height hF = 3a. The foundation 

density Fρ  is 1.25 times that of the soil Sρ . It is very clear that the finite layers present resonances that strongly affect 
the rigid block response. The system dynamics became much more complex in the presence of layers of finite depth. 

  
Figure 19a: Horizontal response of embedded foundations 

on 3 distinct soil profiles 
Figure 19b: Rocking response of embedded foundations 

on 3 distinct soil profiles 



5.3. Embedded foundation on a non-horizontal layer .  
 
Figure 20 shows the three DOFs that are excited by a vertical force applied at the foundation block embedded in a 

layer over non-horizontal rigid bottom. As previously mentioned, the non-horizontal layer produces a fully populated 
compliance matrix, in which all DOFs are coupled, or are excited by any applied external force. This is a behavior that 
has not been reported previously. 

 

 
Figure 20: Response of embedded rigid block in a non-horizontal layer over rigid bottom. 

 
6. CONCLUSIONS 

 
The article addresses the stationary dynamic response of three-dimensional rigid block foundations interacting with 

distinct soil profiles. Dynamic compliance matrices for rigid and massless foundations interacting with a half-space, a 
horizontal layer and a non-horizontal layer are reported. A direct version of the Boundary Element Method is applied to 
synthesize the soil response. A sample of compliance functions for complex soil profiles is furnished. The soil profile 
and the foundation arrangement determine the structure of the compliance matrix. For half-spaces and horizontal layers 
the vertical degree of freedom is uncoupled from the other DOFs. For non-horizontal layers the compliance matrix is 
fully populated, coupling all foundation DOFs in the plane of analysis. The presence of a layer with finite dimensions 
introduces resonances, which are noticeable in the compliance matrices and in the frequency response functions of the 
block foundations. The layer rigid bottom changes dramatically the foundation response, when compared to foundations 
interacting with homogenous half-spaces. For half-spaces the geometric damping mechanism plays a dominant role. 
Material damping has a secondary effect in the dynamic response of rigid structures interacting with half-spaces.  
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