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Abstract. The objective of this work is to propose a numerical proceedure for the solution of linear steady state heat 
conduction problems. One considers the thermal conductivity to be a non Gaussian second order stochastic processes 
with a known covariance function. The thermal conductivity process makes use of the Karhunen-Loeve expansion. In 
order to solve the stochastic differential equation, for the temperature random field, one employs a method based on 
Galerkin projections and extensions of Wiener’s polynomial chaos. Specifically, one represents the stochastic 
temperature field with an optimum trial basis from the Askey family of orthogonal polynomials that reduces the 
dimensionality of the system and lead to an improvement of the convergence error. In order to validate the proposed 
proceedure one solves a simple heat conduction problem. 
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1. INTRODUCTION 
 

A common practice in engineering is to analyze deterministic mathematical models. However, since such ideal 
models are not always adequate in modeling physical phenomena, the need to incorporate randomness is now clearly 
recognized, and there has been a growing interest in the applications of stochastic methods, Manas et al. (2001), Choi et 
al. (2004), Babuska et al. (2002) and Elman et al. (2005). 

Probabilistic methods in engineering may be classified into two major categories: methods using a statistical 
approach and methods using a non-statistical approach. The statistical approach includes Monte Carlo simulation, Latin 
hypercube sampling, among others. These methods require sampling and estimation and are in general simple to apply. 
However, since the accuracy of the sampling techniques depends on the sample size, simulations can become 
prohibitively expensive. Thus, these methods are often used as the last resort leading most of the research effort to the 
development of non-statistical methods. 

The most popular non-statistical method is the perturbation method. An inherent limitation of the perturbation 
method is that the uncertainties cannot be too large, i.e. variances of the random field cannot be too large compared with 
their mean values, e.g. typically less than 10%. Another approach is the Neumann expansion, which is based on the 
inverse of the stochastic operator in a Neumann series. This method too is restricted to small uncertainties and attempts 
have been made to couple it with the Monte Carlo simulation to obtain more efficient algorithms. Recently, a new non-
statistical approach was proposed by Ghanem & Spanos that consists in the discretization of the random field in a 
polynomial chaos expansion method and has successfully applied it to various problems in mechanics. See Ghanem 
(1999), Ghanem and Kruger (1996) and Spanos and Ghanem (1989). 

The polynomial chaos expansion is based on the homogeneous chaos theory of Wiener, see Wiener (1938), and is 
essentially a spectral expansion of the random variables. It allows high-order representation and promises fast 
convergence; coupled with Karhunen-Loeve decomposition for the input and Galerkin projection in random space, it 
results in computationally tractable algorithms for large engineering systems. More eficient Monte Carlo algorithms can 
also be designed when combined with the chaos expansion technique. 
The classical polynomial chaos expansion is based on the Hermite polynomials in terms of Gaussian random variables. 
A more general framework, called the “generalized polynomial chaos” or the “Askey-chaos”, was proposed in Xiu and 
Karniadakis (2002) and also applied by Silva (2006). Here the polynomials are chosen from the polynomials of the 
Askey-Wiener scheme, and may be applied to any type of random variables. Instead, the type of random variables is 
chosen according to the stochastic input and the weighting function of these random variables determines the type of 
orthogonal polynomials to be used as the basis in the random space. The convergence properties of different bases were 
studied in Xiu and Karniadakis (2002) and exponential convergence rate was demonstrated for model problems. 
 
2. THEORETICAL DEVELOPMENT 
 
2.1. Strong formulation of the stochastic boundary value problem 

 



Consider the conduction-convection fin problem illustrated in Figure 1, 

 
Figure 1. – Definition of the problem 

 
where the x-direction is the bar longitudinal axis. Here, one assumes that at 0x =  the bar is subjected to a prescribed 
temperature, i.e. (0)T T= , and that the cross section at x L= , is isolated, i.e. ( ) 0.q L =  

By allowing the heat conductivity ( ),k x θ  to be a random field defined on a probability space ( ), ,F PΩ , one 
obtains a stochastic boundary value problem (SBVP), the solution of which must then also be a random field. Thus, one 
seeks ( ), : RT x Dθ ×Ω →  such that, P-almost surely (P-a.s.), there holds 
 

( ) ( ) ( )( ) ( ) ( ),, , ,  for , 0,f
edT x

dx
hPd

dx Ak x T x T x Lθθ θ θ= − ∈ ×Ω⎡ ⎤⎣ ⎦ , (1) 

 
subjected to the following boundary conditions: 
 

(0, )T Tθ =  and ( , ) 0dT
dx x L

q L kθ
=

= =− . (2) 

 
Here, A is the cross sectional area of the bar, eP  the perimeter of the cross section, ρ the density of the solid, pc  the heat 

capacity of the solid at constant pressure, h is the convection heat-transfer coefficient and fT  the temperature of the 
fluid encompassing the fin, far from the thermal boundary layer. Moreover, for simplicity one prescribes deterministic 
boundary values only. 

To obtain a well-posed problem, one further assumes that ( ),k x θ  is P-a.s. uniformly bounded above away from 

zero below, i.e., that there is infk  and sup 0k > , so that  ( )( )inf sup, , , 1.P k x k k x Dθ θ∈Ω ∈ ∀ ∈ =⎡ ⎤⎣ ⎦  

Let TK  be the set of admissible temperature fields, which for a fixed θ ∈Ω  is given 

by ( ) ( ){ }1.,  with (0, )T T H D T Tθ θ= ∈ =K . Then, the subspace of admissible temperature variation TarV , for a 

fixedθ ∈Ω , is given by ( ) ( ){ } ( ) ( ){ }1 1.,  with (0, ) 0 .,T oar T H D T T H Dθ θ θ= ∈ = = ∈V . Moreover, for 

each fixed x D∈ , one assumes that ( ) ( )2,. PT x L∈ Ω . 
 
2.2. Weak formulation of the stochastic boundary value problem 
 

For the variational characterization of the SBVP, one chooses the set ( )2

T PL⊗ ΩK  as the set of admissible random 

fields on D and now seeks ( ) ( )2, T PT x Lθ ∈ ⊗ ΩK  so that 
 

( ) ( ) ( ) ( )1 2, , o Pa T v l v v H D L= ∀ ∈ ⊗ Ω  (3) 

in which 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ), ,, , , ,edT x dv x hP
dx dx ADa T v k x T x v x dxdPθ θθ θ θ θΩ= +∫ ∫  (4) 

and 

( ) ( ) ( ),ehP
fADl v T v x dxdPθ θΩ= ∫ ∫  (5) 
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where 

( ) ( ) ( ), ,
D

uv u x v x dxdPθ θ θ
Ω

= ∫ ∫ . (6) 

 

If one chooses the tensor product space ( ) ( )1 2

o PH D L⊗ Ω  as the function space of random fields on D, one may 

reformulate the SBVP in Eq. (3) as: Find ( ) ( ) ( )1 2,o o PT x H D Lθ ∈ ⊗ Ω , ( ) ( ), ,oT x T T xθ θ= + , such that 
 

( ) ( ) ( ) ( ) ( )1 2, , , o o Pa T v l v a T v v H D L= − ∀ ∈ ⊗ Ω  (7) 

where, since T Cte= , 

( ) ( ) ( ), ,e

D

hP
a T v T v x dxdP

A
θ θ

Ω
= ∫ ∫ . (8) 

 
The problem may again be rewritten as: Find ( ) ( ) ( )1 2,o o PT x H D Lθ ∈ ⊗ Ω , so that 
 

( ) ( ) ( ) ( )1 2, , o o Pa T v l v v H D L∗= ∀ ∈ ⊗ Ω  (9) 

where 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ), ,, , , ,o e
Do o

dT x dv x hP
dx dx Aa T v k x T x v x dxdPθ θθ θ θ θΩ= +∫ ∫                                          (10) 

and 

( ) ( ) ( ) ( ),e
D f

hP
Al v T T v x dxdPθ θ∗

Ω= −∫ ∫                                                                                                           (11) 

 
2.3. Representation of stochastic processes 
 

Two of the most useful expansions for random processes are: the Karhunen-Loeve expansion and the polynomial 
Chaos expansion. The first requires the knowledge of the covariance structure of the process under consideration, while 
the second one is more general. 
 
2.3.1. The Karhunen-Loeve expansion 
 

Let D be a compact subset of R and ( ){ },
x D

k x θ
∈

 a stochastic field defined on a probability space ( ), F, PΩ  

with values in R. This random field is a 1-parameter family on real valued ( ),k x θ , ( ),x Dθ ∈ ×Ω . 

• Assumption I: One assumes that ( ){ },
x D

k x θ
∈

 is a second-order random field, i.e., 

( )2, , ,E k x x Dθ ≤ ∞ ∀ ∈⎡ ⎤⎣ ⎦  where E[.] denotes the mean or ensemble average. 

• Assumption II: One also assumes that ( ){ },
x D

k x θ
∈

 is continuous in quadratic mean, i.e., 

( ) ( )( )2, , 0, 0.k x h k x hθ θ+ − → →  

Under assumptions I and II and due to the symmetry and the positive definiteness of ( )1 2,C x x , the auto-covariance 

function ( )1 2,C x x  on the field ( ){ },
x D

k x θ
∈

 defines a continuous self-adjoint Hilbert-Schmidt operator Q on the 

Hilbert space ( )2 ,L D R : 
 

( ) ( ) ( ) ( ) ( )2 1 2 1 1 2, , for ,Qf x C x x f x dx f L D R= ∈∫ D
.                                                                           (12) 

 
This operator has countable number of eigenvalues 1 2 3 ..... ....nλ λ λ λ≥ ≥ ≥ ≥ , and the associated eigenfunctions are 
solutions of the integral equation 
 

( ) ( ) ( )2 2n n nQf x f xλ=                                                                                                                                    (13) 
 



and constitute an orthonormal basis { }nf  of ( )2 ,L D R , i.e., 
 

( )2
, .n m nmL D

f f δ=                                                                                                                                                (14) 

 
The random field ( ){ },k x θ  can be expanded in terms of the eigenfunctions nf  as 
 

( ) ( ) ( ) ( )
1

, , n n nP
n

k x k x f xθ θ λ ξ θ
∞

=

− = ∑                                                                                                (15) 

with 

( ) ( )[ ] ( ) ( ), , ,
P

k x E k x k x dPθ θ θ θ
Ω

= = ∫                                                                                                      (16) 

 
in which ( ),

P
k x θ  is the mean function of the stochastic process/field ( ),k x θ  and ( )1ξ θ , ( )2ξ θ , 

( )3ξ θ ,.. ( )nξ θ ,.., are uncorrelated random variables. 
By definition, the covariance function is bounded, symmetric, and positive definite. As a result, one may show that 

it has the spectral decomposition, which is given by 
 

( ) ( ) ( )1 2 1 2
1

, n n n
n

C x x f x f xλ
∞

=

=∑                                                                                                                    (17) 

Moreover, defining ( )( ) ,
P

k x k x θ= , one may show that 
 

( ) ( ) ( )
1

, ( ) n n n
n

k x k x f xθ λ ξ θ
∞

=

= +∑                                                                                                        (18) 

where, 

( ) 0n P
ξ θ = ,    ( ) ( )n k nkP

ξ θ ξ θ δ= ,                                                                                                          (19) 

and 

( ) ( )1 ( , ) .n nD
n

x f x dxξ θ α θ
λ

= ∫                                                                                                                 (20) 

 
In this work one employs the following covariance function ( )1 2,C x x  given by 
 

( ) 2 1
1 2, expb

x x
C x x

b
σ

− −
= ⎛ ⎞

⎜ ⎟
⎝ ⎠

                                                                                                                         (21) 

 
in which b is associated with the correlation length. A covariance function ( )1 2,C x x  is denoted homogeneous and 

isotropic if ( ) ( )1 2 2 1, whereC x x C r r x x= = − . Some typical values for b are: b=0.1 (lower curve), b=1.0 (middle 

curve) and b=2.0 (upper curve) as depicted in Figure 2, for bσ  =1. 

 
Figure 2. – Dependence of the Covariance function with respect to the correlation length b 
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Notice that the steeper a bilinear form decays to zero as a function of one of its arguments, the more terms are needed 
in its spectral representation in order to reach a present accuracy. Noting that the Fourier transform operator yields a 
spectral representation, it may be concluded that the faster the autocorrelation function tends to zero, i.e. the smaller is 
b, the broader is the corresponding spectral density, and the larger the number of requisite terms necessary to adequately 
represent the underlying random process by the Karhunen-Loeve expansion. 
 
2.3.2. Discretization of the Karhunen-Loeve expansion 
 

The discrete solution of the weak form of the integral equation may be stated as: Determine a non zero 
function mf V∈ , ( ){ } ( )2, 1, ,m

jV span x j m L D Rϕ= = ⊂ , such that, there is a Rλ∈ , which satisfies 

 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 2 2 2
ˆ ˆ ˆ, , for every m

D D
C x x f x f x dx dx f x f x dx f Vλ= ∈∫ ∫ ∫ D

                           (22) 

 
Now, since mf V∈  and ˆ mf V∈ , then  
 

( ) ( ) ( ) ( )
1 1

and ˆ
m m

j j i i
j i

f x a x f x b xϕ ϕ
= =

= =∑ ∑                                                                                                    (23) 

 
Here, one notice that, since ˆ mf V∈  is arbitrary, then one must have that mRb∈  is an arbitrary vector. Thus, replacing 

Eq. (23) into Eq. (22) one derives the following discrete problem: Determine the non zero vectors mRa∈ , such that 
there is a real λ that solves 
 

[ ] [ ]P M⎡ ⎤−⎣ ⎦ a 0λ =                                                                                                                                            (24) 

in which 

[ ] ( ) ( ) ( )1 2 2 1 1 2, i jij D D
P C x x x x dx dxϕ ϕ= ∫ ∫                                                                                         (25) 

and 

[ ] ( ) ( )2 2 2i jij D
M x x dxϕ ϕ= ∫ .                                                                                                                       (26) 

 
From the above results, one may approximate the stochastic process associated with the conductivity ( ),k x θ  by a 

truncated series and consider the following finite sum 
 

( ) ( ) ( ) ( )
1

,
m

n n n
n

k x k x f xθ λ ξ θ
=

= +∑                                                                                                            (27) 

 
2.4. Representation of the uncertainty: Homogeneous Chaos 
 

In this work, the modeling of the uncertainty over the thermal conductivity is done by using uniform random 
variables. In general, there is not complete information about the probabilistic uncertainty. Normally, in engineering, 
one knows only the statistical moments of first and second order. The type of the density of probability function is 
determined based on experience, observation of the random process or heuristically. When the uncertainty is described 
by a set of random variables and their joint probability density function one obtains a complete characterization of the 
mathematical model of the uncertainty. Here, we make use of the Askey-Wiener scheme in order to represent the 
uncertainty in the construction of the solution space for the stochastic heat conduction problem. 

It is clear from the preceding discussion that the implementation of the Karhunen-Loeve expansion requires the 
knowledge of the covariance function of the process being expanded. This implies that the expansion can be used for 
the random coefficients in the operator equation. However, it cannot be used for the solution process ( ),T x θ , since 
its covariance function and therefore the corresponding eigenvalues and functions are not known. An alternative 
expansion is needed which circumvents this problem. Such an expansion could involve a basis of known random 
functions with deterministic coefficients to be found by minimizing some norm of the error resulting from a finite 
representation. This is done with the use of the Askey-Wiener scheme. 



2.4.1. Definitions and properties 
 

Let ( ){ }
1i i

ξ θ ∞

=
 be a set of random variables. Consider the space ˆ

pΓ  of all polynomials in ( ){ } 1i i
ξ θ

∞

=
 of degree not 

exceeding p. Let pΓ  represent the set of all polynomials in ˆ
pΓ  orthogonal to 1

ˆ
p−Γ . Finally, let pΓ  be the space spanned 

by pΓ . Then the subspace pΓ  of Ω is called the p-th Homogeneous Chaos, and pΓ  is called the Polynomial Chaos of 
order p. 

Based on the above definitions, the Polynomial Chaos of any order p consist of all orthogonal polynomials of order 

p obtained from a linear combination of the random variables ( ){ } 1i i
ξ θ

∞

=
. Notice that, since random variables are 

themselves functions, it becomes clear that Chaos Polynomials are therefore functionals. 
The set of Polynomial Chaos is a linear subspace of the space of square-integrable random variables in Ω, and is a 

ring with respect to the functional multiplication ( )( ) ( )( ) ( )( ) ( )( )p l l pξ θ ξ θ ξ θ ξ θΓ Γ = Γ Γ . In this context, 
square integrability must be constructed to be with respect to the probability measure defining the random variables. 
Denoting the Hilbert space spanned by the set ( ){ }

1i i
ξ θ ∞

=
 by ( )W ξ , the resulting ring is denoted by ( )WΦ ξ , and is 

called the ring of functions generated by ( )W ξ . Then, it can be shown that under some general conditions, the ring 

( )WΦ ξ  is dense in the space ( )2L Ω , Kakutani, 1961. This means that any square-integrable random function ( RΩ → ) 

can be approximated as closely as desired by elements from ( )WΦ ξ . Thus, any element ( )β θ  from the space ( )2L Ω  
admits the following representation, 
 

( ) ( ) ( )( )1

1 1

1 2 1

,....
,....

0 ... ,....

,.....n r

p p

r p

n
p

p n n n p

aρ ρ ρ ρ
ρ ρ

β θ ξ θ ξ θ
≥ + + + =

= Γ∑ ∑ ∑                                                                         (28) 

 
where ( )pΓ  is the Polynomial Chaos of order p. The superscript in  refers to the number of occurrences of ( )

iρ
ξ θ  in 

the argument list for ( )pΓ . The form of the coefficients appearing in Eq. (28) can be rewritten as 
 

1

1 1 1 2 1 2

1 1 2

0 0 1 2
1 1 1

( ) ( ( )) ( ( ), ( )) ...
i

i i i i i i
i i i

a a aβ θ ξ θ ξ θ ξ θ
∞ ∞

= = =

= Γ + Γ + Γ +∑ ∑∑                                                            (29) 

 
In this equation, the symbol ( ( ))n iξ θΓ  denotes the Polynomial Chaos of order n in the variables (

1
( ), ..., ( ))

ni iξ θ ξ θ . 
The upper limits on the summations in Eq. (29) reflect the symmetry of the Polynomial Chaoses with respect to their 
arguments. Moreover, Eq. (29) may be rewritten in the form 
 

1

ˆ( ) ( ( ))j j
j

aβ θ θ
∞

=

= Ψ∑ ξ ,                                                                                                                                      (30) 

 
where there is a one-to-one correspondence between the functionals [ ]Ψ  and [ ]Γ , and also between the coefficients 

ˆ
ja  and 

1 2i ia  appearing in Eq. (30). 

Now, as defined above, each Polynomial Chaos is a function of the infinite set ( ){ }
1i i

ξ θ ∞

=
, and is therefore an 

infinite dimensional polynomial. In practice, however, this infinite set has to be replaced by a finite dimensional one. As 
a result, it's natural to introduce the concept of a finite dimensional Polynomial Chaos. In particular, the m-dimensional 
Polynomial Chaos of order p is the subset of the Polynomial Chaos of order p, as defined above, which is a function of 
only m uncorrelated random variables ( )iξ θ . In this case, one has 
 

1

( ) ( ( )), with ( ) .m

j j

j

a Rβ θ θ θ
∞

=

Ψ ∈∑ ξ ξ                                                                                                                 (31) 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

In this case, ( ) ,mβ θ ∈Θ  in which mΘ  is the subspace spanned by the polynomials of ( ) mRθ ∈ξ  of all orders. Notice 

that ( )2lim , which is dense in m

m
L∞

→∞
Θ ≡ Θ Ω . However, { }dim mΘ = ∞ . As a result, in order to make it computable, a 

second approximation is done. Here, one denotes ,m pΘ  to be the subspace spanned by all polynomials of order less or 
equal to p, of ( ) mRθ ∈ξ . Consequently { },dim m pΘ  is Finite and ( ),

2
,
lim , which is dense in m p

m p
L∞

→∞
Θ ≡ Θ Ω . 

 
2.4.2. Askey-Wiener Scheme 
 

The Askey-Wiener scheme is a generalization of the chaos polynomials, also known as Wierner-Chaos polynomials. 
The theorem of Cameron-Martin (1947), shows that these polynomials form a base, of a dense subspace of random 
variables of second order in ( )2L Ω . 

The Askey-Wiener scheme consists of a family of subspaces generated by orthogonal polynomials obtained, in 
general, as the solution of ordinary differential equations. Among them are the Hermite, Laguerre, Jacobi and Legendre 
polynomials. By taking the limit of a given set of parameters, the Askey-Wiener scheme establishes relations among the 
subspaces generated by the above orthogonal polynomials. Each subspace generated by these polynomials form a 
complete set in ( )2L Ω . Figure 3 depicts the relation among the polynomials belonging to the Askey-Wiener scheme.  

 
Figure 3. - Relation among the polynomials in the Askey-Wiener scheme 

The orthogonality of these polynomials is defined with respect to a given weight function, which is given by the density 
of the probability function. For example, for Gaussian random variables, one obtains the Hermite polynomials. A Table 
(1) shows the correspondence among the subsets of polynomials of the Askey-Wiener scheme and their associate 
density of probability function. 
 

Table 1 – Relation among the type of random variables and the polynomials from the Askey-Wiener scheme 
 

Random variables polynomial support 
Gaussian Hermite (-∞,+∞) 
Gamma Laguerre [0, +∞) 

Beta Jacobi [a,b] 
Uniform Legendre [a,b] 

 
2.5. The Stochastic Finite Element Method (SFEM) 
 

The SFEM in its current form was first introduced by Ghanem and Spanos. Although both the term and the idea of 
incorporating randomness in a finite element formulation have a longer history, this probably constitutes the first 
systematic Galerkin approximation in deterministic and random variables. 

In this work, one follows the ideas proposed by Ghanem and Spanos and apply the Galerkin method in order to 
determine approximate solutions to the stochastic boundary value problem. The temperature random field is assumed to 
be given by 



( ) ( ) ( ) ( )
1

, , with , ( ( ))
q

o o i i

i

T x T T x T x p xθ θ θ θ
=

= + = Ψ∑ ξ                                                                        (32) 

 
where ( ) ( ),

2

m p

i LθΨ ∈Θ ⊂ Ω  and ( ) ( )1n

i T op x Var H D∈ ⊂ , in which 

( ) ( ) ( ){ }1, 1, ...n

T i i oVar span x i n x H Dφ φ= = ∈  and the polynomial functions ( )i θΨ  are defined in terms of the 
Askey-Wiener scheme. Notice that, given the number m of the term used in the Karhunen-Loeve expansion, and the p 

of Homogeneous Chaos used, q may be determined by 1

0

1

1
1 ( )

!

p
s

r

s

q m r
s

−

=

=

= + Π +∑ . Now, since ( ) ( )1n

i T op x Var H D∈ ⊂  

one has 

( ) ( )
1

n

i ij j
j

p x a xφ
=

= ∑                                                                                                                                                (33) 

 
in which ija  are the unknown coefficients to be determined. Introducing Eq. (33) into Eq. (32) gives 
 

( ) ( ) ( )
1 1

, ( )
q n

qn
o sj j s

s j

T x a xθ φ ψ θ
= =

= ∑∑ ξ .                                                                                                             (34) 

 
Replacing Eq. (34) into Eq. (9) leads to the discrete stochastic boundary value problem that consist in the determination 
of ( ) ,,nq n m p

o TT x Varθ ∈ ⊗Θ , so that 
 

( ) ( ) ,, , nq n m p

o Ta T v l v v Var∗= ∀ ∈ ⊗Θ                                                                                                          (35) 
where 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ), ,, , , ,
nq

o enq nq
Do o

dT x dv x hP
dx dx Aa T v k x T x v x dxdPθ θθ θ θ θΩ= +∫ ∫                               (36) 

and 

( ) ( ) ( ) ( ),e
D f

hP
Al v T T v x dxdPθ θ∗

Ω= −∫ ∫                                                                                               (37) 

 
in which ,m pΘ  is the subspace generated by all polynomials of mR  of degree n p≤ , with ( ),dim m p qΘ = . 

Defining 
1

n

s sj j
j

a
=

= ∑U e , where { }, 1, ..l l n=e  is a cartesian base system in mR , and denoting 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )}, ,ji e

kisj s k s j k iD

d xd x hP
K k x x x dxdP

dx dx A

φφ
ψ ψ ψ φ ψ φ

Ω
= +

⎧
⎨
⎩∫ ∫ ξ ξ ξ ξ ξ    (38) 

( ) ( ) ( )( ) ,e
ki f k iD

hP
F T T x dxdP

A
ψ θ φ

Ω
= −∫ ∫ ξ                                                                                                (39) 

1

n

k ki i
i

F
=

= ∑F e  and [ ] ( )
1 1

n n

ks kisj i j
i j

K
= =

= ⊗∑∑K e e .                                                                                                    (40) 

one may reformulate the SFEM as: determine n qR +∈U , that solves the following system of equations 
 

[ ] [ ] [ ]
[ ] [ ]

[ ]

1 111 12 13 1

2 222 23 2

3 333 3

...

...

...
... ...... ...

q

q

q

q qqq

U
U
U

Sym
U

=

⎡ ⎤⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎣ ⎦
⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎡ ⎤⎣ ⎦⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎡ ⎤ ⎨ ⎬ ⎨ ⎬⎣ ⎦⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦⎣ ⎦

FK K K K
FK K K
FK K

FK

                                                                                   (44) 
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2.6. Numerical results 
 
Here, one considers the fin problem defined in figure 1 where L=0.5m, ko=398.0 2/W m C°  and the convection 

coefficient h=100.0 /W m C° . The prescribed temperature T =100 0°C and the fluid temperature fT =25°C. The cross 
section of the fin is circular with a radius of R=0.005m. The covariance function of the thermal conductivity is given by 
Eq. (21), with b=1.0 and bσ  =100.0. Figure 4 depicts the exact covariance function 

 
Figure 4 – exact covariance function 

 
Figure 5 depicts the Karhunen-Loeve spectral approximation for m=3 

 
Figure 5 - Karhunen-Loeve spectral approximation for m=3 

 
Figure 6 depicts the difference between the exact and the Karhunen-Loeve spectral approximation (m=3) 

 
Figure 6. Error in the approximation of the covariance function 

 
Here, the fin problem is solved by a Monte Carlo simulation using 100 samplings together with the Askey-Wiener 

for m=3 in the KL approximation and p=2 for the order of the generalized polynomial chaos (Askey-chaos). The 
adequacy of the Monte Carlo simulation was tested by determining the average thermal conductivity, whose exact value 
is ko=398.0 2/W m C° . Figure 7 depicts the temperatures distributions obtained by the Monte Carlo simulation (in 
blue) and the Askey-chaos solution form m=3 and p=2 (in read). 



 
Figure 7. – Temperatures distributions obtained by Monte Carlo (blue) and Askey-chaos (read) 

Figure 8 depicts the variance distributions obtained by the Monte Carlo simulation (in blue) and the Askey-chaos 
solution form m=3 and p=2 (in read). 

 
Figure 7. - Variance distributions obtained by Monte Carlo (blue) and Askey-chaos (read) 

 
3. CONCLUSION 
The spectral approach have shown to converge very fast to an approximated solution to the stochastic heat problem. 
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