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Abstract. The cell-depleted layer in microvessels is of vital importance in the transport of oxygen-saturated red cells to
the unsaturated tissues. A high viscosity drop emulsion is used as a theoretical model to describe the blood flow in the
microcirculation. We examine the core flow solution with the inner fluid being an emulsion of high viscosity drop facing a
small annular gap of Newtonian plasma. A two-equation constitutive model derived from a microstructural approach is
applied to describe the behavior of the emulsion flow. The model allows the study of the effect of a number of parameters
(capillary number, viscosity ratio and cell volume fraction) on the flow. An intrinsic viscosity of the blood is predicted
theoretically as a function of the capillary number and the dimensionless vessel diameter, in agreement with previous
experimental studies. The theoretical model suggests that in suspension flows like blood the apparent viscosity may be
much reduced by the nonuniform distribution of cells. A possible application of this work could be in illness diagnosis by
evaluating of changes in the intrinsic viscosity due to blood abnormalities.
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1. INTRODUCTION

The red cell and plasma properties are significantly altered in many diseased states. The microcirculation is the site
where the earliest manifestations of cardiovascular disease (in particular, inflammatory processes).

Blood is a concentrated suspension of red cells, white cells and platelets in plasma. The plasma has approximately the
same density 1000kg/m3 and viscosity 0.001 Pas as water. The average volume fraction of red cells (i.e. hematocrit) in
the human body is about 40-45% although it may vary considerably within the microcirculation (Pries et al., 1994). The
volume fraction of white cells is less than 1% and platelets occupies an even smaller volume fraction. Thus, the rheology
of blood is primarily determined by red cells (Skalak et al., 1989). In microvessels of 7µm in diameter or less, the red
cells deforms and organize in lines (see Fig. (1a)). A thin film of plasma of 0.5 - 1.0µm thickness (Lipowsky, 2005),
separates the cell membrane from the capillary wall. The blood rheology in such capillaries are critically determined by
the clearance between the cell and endothelial wall (see review by Fung, 1973). Secomb et al., 1986, exploited the fact
that lubrication theory applies in this case, and solved for velocity and shape of a red cell centered in a uniform cylindrical
capillary.

The pictures 1b, 1c in Fig. (1) show different dimensional regimes of the cell motion in microvessels. Fortunately, and
approximative description of non-axisymmetric red cell motion in micro-vessels suggests that tank-treading motion has
little rheological effect (Secomb and Hsu, 1996).

The cell-depleted plasma layer that forms adjacent to vessel walls is an important example of the behavior of the blood

Figure 1. Illustration of red cells flow in capilar of diameter less then 7µ.
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in microvessels. The Fahreaus and Fahraeus-Lindqvist effects (Fahraeus, 1929; Fahraeus and Lindqvist, 1931) are the
classical manifestations of the cell-depleted layer in micro-vessels. The first describes the reduced hematocrit in vessels
less than 0.3mm in diameter. Fahraeus (and many subsequent investigators) performed experiments with blood flow in
long glass tubes discovering that the tube hematocrit measured by stopping the flow and emptying the tube content was
consistently smaller than the discharge hematocrit measured in the discharge reservoir. The second effect describes the
concomitant reduction in flow resistance with the decrease of the intrinsic viscosity. It reaches a minimum at diameter
vessels of approximately 5µm. After this minimum the blood apparent viscosity increases as tube diameter decrease.
This inversion of the Fahraeus-Lindqvist effect corresponds to the regime in which the red blood cells move in single-line
flow (see illustration of this regime in Fig. (1)).

Approximately 80% of the total pressure drop between the aorta and the vena cava occurs in micro-vessels (Popel and
Jonhson, 2005). The presence of a cell-depleted layer near the vessel wall in blood flow promotes the skimming plasma
that has a significant effect on the pressure drop needed to drive blood flow through the smaller vessels.

Red blood cells have approximately 90µm3 of volume and 135µm2 of surface area. In the absence of deformation-
inducing flow, red cells assume a biconcave disk-shape of approximately 8µm and 2µm, that is, disks with a double-sided
dimple at the center (see Fig. (2)).Red cells suspended in plasma are neutrally buoyant.

Basically, the blood assume three different regimes. For diameters of 0.6 to 1mm the blood still have a homogenous
aspect. The red blood cells has uniform distribution and the blood intrinsic viscosity is independent of the vessel diameters
size. For healthy person it has a value of 3.0mPas (Cunha, 2002). In the range of 0.02 to 0.6mm the red blood cells
occupy central region of the blood vessel, and a cell-depleted plasma layer with thickness δ = 2µm appears. For vessels
with diameter up few cell size, the cells travel in single-line (Secomb, 2005). The dynamics is dominated by cell-wall
interactions and the rheology of the blood can be accurately predicted by considering the motion of a single red cell. In
this regime non-continuum effects of the blood arises from the finite size of the red blood cells and a description of the
blood as a homogenous fluid should not be applied.

Red blood cells, of a mammalian, consist of a thin flexible membrane containing the cytoplasm: an aqueous solution
of hemoglobin that behaves as a Newtonian fluid with a viscosity several times larger than the plasma, µi ∼ 10−2Ns/m2.
The cytoplasm fluid is incompressible; thus, cell volume is preserved. The red cell membrane exhibits viscoelastic proper-
ties (Evans and Skalak, 1980) that have been extensively studied (Popel and Jonhson, 2005). According to theses studies,
the mechanical properties of the red cell membrane are characterized by four material constants; an elastic modulus of
dilatation ED = 0.5N/m , an elastic modulus of shear ES ∼ 6×10−6, a bending moment MB ∼ 2×1019Nm and shear
viscosity µγ̇ = 10−6Ns/m The large magnitude of ED indicates that the area of a red cell membrane remains essentially
constant.

In this paper the cell-depleted layer is modeled as a plasma layer in a core flow with a dilute emulsion with drops
of high viscosity ratio working as prototypes of red blood cells. The emulsion will represent the concentrated blood
that travels in the core region of micro-vessels with a plasma skimming effect due to the cell-depleted layer adjacent to
the wall. The emulsion model has reproduced the shear thinning behavior of the blood due to the deformation of the
prototypes cells. In addition, we compute the viscosity decrease with vessel diameter and the effect of the viscosity ratio
and hematocrit on the intrinsic apparent viscosisty of blood. This model in comparison with experimental results of in vivo
experiments shows a qualitative good agreement and evidences the absence of some blood properties as cell aggregation.

1.1 A Dimensional Analysis

In this subsection some scaling arguments are presented in order to identify the main physical parameter to show
that the flow in the microcirculation is characterized by a low-Reynolds number flow (Cunha, 2002). We use typical
physiological pressure gradient of ∆p = 60mmHg over l = 1cm in the microcirculation. The plasma has approximately
the same density ρ ≈ 1000Kg/m3 and viscosity µp ≈ 0.001Ns/m2 as water. The Poiseuille’s law for the flow in a
micro-vessel of radius 100µm provides an estimate of the local shear rate γ̇ = R∆p/(8µpl) ∼ 104s−1. On the length

7.8

1.7

µm

µ m

Figure 2. Illustration of the biconcave shape of non-deformed erythrocytes and their typical (dimensions in the absence
of deformation)
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scale of a red cell, a = 5µm, the Reynolds number that characterizes the plasma flow is Re = ργ̇a2/µp ∼ 0.1. The
results indicates that viscous stresses dominate the inertial stresses in the plasma. Now, using the physical constants that
characterize the mechanical properties of red cells, we can form the group of dimensionless parameters shown in Tab. (1).

Table 1. Dimensionless physical parameters of the cells motion in microvessels. The parameters are from physiologic
normal erythrocytes in microvessels.

Dimensionless parameter Physical meaning Value

Membrane viscosity ratio: λm = µm
µ Relative importance of membrane viscosity λm ∼ 300

Cytoplasmatic viscosity ratio:λi =
µi
µ Relative importance of cytoplasmatic flow λi ∼ 10

Elastic capillary parameter: CaS = µγ̇a
ES

Viscosity and elastic stresses ratios CS ∼ 0.5

Bending parameter: CB = µγ̇a3

MB
Viscous and bending stresses ratio CB ∼ 100

Dilatation parameter: CD = µγ̇a
ED

Dilatation and viscous stress ratio CD ∼ 10−5

The typical parameter values displayed in the table above are obtained from the well-established mechanical properties
listed in §1.and the local shear has been estimated in this section.

A number of important conclusions can be drawn on the basis of the dimensionless parameter defined above. The small
magnitude of CD indicates that viscous stress are too small to significantly dilate the red cell membrane; the surface are
of a red cell remains essentially constant, as expected. The observations that λi ¿ λm indicates that membrane viscosity
dominates the cytoplasmic viscosity. Thus, the internal circulation of the cytoplasm is largely masked by the membrane
viscosity and is expected to have little dynamical effect on red cell motion. This prediction is in agreement with theoretical
studies (Barthes-Biesel and Sgaier, 1985; Secomb and Hsu, 1996) Actually this property has also motivated the present
work when considering an emulsion of high viscosity ration dropas a first proptotype model for the. The estimative that
CS = O(1) indicates that the elastic shear stresses are significant, as expected. The bending parameter is large suggesting
that bending stress are unimportant. However, bending stresses should be estimated from the curvature radius of the red
cell membrane. Thus, we could re-define the parameter CB = µpγ̇/MBκ3, where κ is a typical curvature. For a deformed
red cell, κ may be several times larger than 1/a thus, CB = O(1) indicating that bending stresses are important. This
finding is in agreement with predictions of Secomb et al., 1986. In summary our dimensional analysis predicts that red cell
motion in the micro-vessels is constrained by constant area and is sensitive to three parameters: the membrane viscosity
ratio µm, the elastic capillary parameter CaS , and the bending parameter, CB .

2. PRESSURE DRIVEN CORE FLOW IN MICRO VESSELS

In this section we consider a model of a core flow emulsion of high viscosity ratio in order to examine the pressure-
driven flow of blood in micro-vessels. The drops of high viscosity as compared to the plasma viscosity, in the present
context are prototypes of the red cells. It is used a dilute theory to calculate the influence of each cell prototype alone to the
main flow. The present model has permitted to evaluate the intrinsic blood viscosity function of the capillarity number, the
viscosity ratio and the cells volume fraction. The dilute emulsion occupies the core region of the micro-vessel whereas a
plasma layer occupies the region adjacent to wall. A schematic of the problem is shown in comparison with a micro-vessel
micrographic in Fig. (3).
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Figure 3. Typical micro-vessel with approximated 10µm of diameter. The blood emulsion travels in the core of the vessel
whereas a thin cell-depleted layer (with thickness δ) containing pure plasma flowing adjacent to the wall.
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2.1 Governing Equations

The general equations of conservation of mass and momentum for the flow illustrated in Fig. (3) are described next.
For the thin cell-depleted layer containing pure plasma, applies following balance equation

∇ · u = 0, −∇p +∇ · τ ∗ = 0. (1)

The plasma is considered an incompressible Newtonian fluid of viscosity µp, and the constitutive equation for the
stress tensor τ ∗ = 2µpD. Here u represents the Eulerian velocity field, p is the pressure and D = 1/2(∇u + ∇uT )
denotes the rate of strain tensor of the flow.

For the blood emulsion in the core flow region (0 ≤ r∗ ≤ R − δ) the governing equation describing the balance of
mass and momentum are respectively given by

∇ · u = 0, −∇p +∇ · σ∗ = 0, (2)

where

σ∗ = 2µpD + Σd. (3)

The blood emulsion is modeled as a high viscosity ratio dilute emulsion (λ À 1) and the drop contribution to the
stress tensor are calculated by Σd, expressed as (Oliveira, 2007)

Σd = 2µ̃(λ, φ)D +
4

Ca
A +

15
7

[
A ·D + D ·A− 2

3
(A : D)I

]
, (4)

where µ̃ = φ[5/2 − 25/(4λ)], φ is the cell volume fraction, λ is the viscosity ratio between the drop and plasma,
Ca = λµγ̇ca/c, c = 20/19. The distortion tensor A is determined by a particular case of the Frankel and Acrivos, 1970
and Oliveira, 2007.

dA
dt

= CaW ·A− CaA ·W +
5
2λ

CaE− cA, (5)

where W is the anti-symmetric part of the velocity gradient (vorticity tensor). Note that the absence of the drops in the
flow Σd = 0 corresponding to a flow of pure plasma and the core region is full of plasma with τ = 2µpD.

2.2 Solution Of The Core Axisymmetric Emulsion Flow In A Tube

In this section the solution for the velocity profile and its associated flow rate and the intrinsic viscosity of the blood
based on the two-phase model will be presented. As mentioned before the dilute emulsion of high viscosity drop occupies
the core region defined by the domain 0 < r ≤ ξ, where r is a dimensionless radius defined as r = r∗/R and ξ is
the dimensionless ratio ξ = (R − δ)/R. The annular region (See Fig. 3), occupied by pure plasma defines the domain
ξ < r < 1. We suppose a isothermal flow in steady state and the drops density differ only slightly from that of plasma,
so that the buoyancy effects are neglected. In the present formulation cylindrical coordinates are used and the vessel wall
has a constant radius R. The pressure gradient is then constant along the dimmensionless coordinate z.

The complete set of governing equations described in §2.1 written in terms of cylindrical coordinates takes the form




1
r

∂

∂r
(rσ) = −ReG for 0 < r ≤ ξ

1
r

∂

∂r
(rτ) = −ReG forξ < r ≤ 1

and its solution





σ = −ReG

2
r for 0 < r ≤ ξ

τ = −ReG

2
r for ξ < r ≤ 1

. (6)

where τ = τ∗/U/Rµp, σ = σ∗/U/Rµp, G = (∂p/∂z)/ρU2 where U is the average velocity of the flow and the variables
with the notation (*) are dimensional quantities. In addition, according to Fig. (3) the imposed boundary conditions are
the non-slip boundary on the vessel-wall (no porous vessel), the symmetry condition on the axis of the tube (i. e. no shear
stress) and velocity and stress continuity on the interface between the blood emulsion and cells depleted layer. These
conditions are written as follows

σ(0) = 0, up(1) = 0, σ(ξ) = τ(ξ), us(7ξ) = up(ξ) (7)

where us and up means respectively the velocity profile in the blood domain (core region) and velocity profile in the
plasma domain (adjacent layer to wall). The contour conditions are used to calculate the solution of the governing
equation in Eq (6).
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Now, substituting Eq. (3) into Eq. (6) with the definition of Σd , given by Eq. (4), and the steady solution of A from
Eq. (5), the following set of differential equation in cylindrical coordinates are determined.





µT
du

dr
+ ε

[
µB

(
du

dr

)3

+
GRe

2
r

(
du

dr

)2
]

= −GRe

2
r for 0 < r ≤ ξ

du

dr
= −GRe

2
r for ξ < r ≤ 1

. (8)

where µT = 1 + φ[5/2 + 3/(2λ)] (Taylor’s viscosity,(Taylor, 1932) associated to the limit ca ¿ 1), µB = 1 + µ̃ (Blob
viscosity, associated to the limit Ca À 1), ε = (aCa/cR)2.

Solving the velocity field in the core region in the Eq. (8) simply gives the parabolic profile

up(r) = −ReG

4
r2 + E. (9)

In order to calculate the integration constant E, we apply the non-slip condition up(1) = 0 and thus we find for the
velocity profile in this region the following expression

up(r) =
ReG

4
(1− r2). (10)

In Eq (8) we propose for the solution of the differential equation in the blood emulsion side a regular perturbation
method based on the small parameter ε. The velocity field in the core region is then expressed as

us(r) = u0(r) + u1(r)ε + u2(r)ε2 + ... = up(r) + u′(r). (11)

A similar pertubation method have been used by Cunha and Sobral, 2004 in the context of pressure driven flow of magnetic
fluids. Note that this velocity profile may be the summation of a parabolic profile that is up(r) and a non-parabolic profile
u′(r) due to the presence of high viscosity ratio drops. Using Eq. (11) in the differential equation of the core domain of
Eq. (8) we can find, for terms with ε0, the following differential equation

µT
du0

dr
+

ReG

2
r = 0. (12)

For terms with ε1 we can find

µT
du1

dr
+ µB

(
du1

dr

)3

+
1
2
GRe

(
du0

dr

)2

= 0. (13)

For those with ε2 there is

µT
du2

dr
+ 3µB

(
du0

dr

)2 (
du1

dr

)
+ GRe

(
du0

dr

)(
du1

dr

)
= 0. (14)

The respectively solutions for u0, u1 and u2 are

u0(r) = −1
4

GRe

µT
r2 + A0, u1(r) = −G3Re3(µT − µB)

32µT
r4 + A1, u2(r) = −Re5G5(µT − µB)

2µT − 3µB
192µ7

T r6 + A2.

(15)

The continuity velocity contour condition up(ξ) = us(ξ) condition is used to calculate each integration constant A0, A1

and A2. This condition states that in the blood-plasma interface the blood velocity profile is then a parabolic profile and
independent of ε. Then we solve the following equations

u0(ξ) = up(ξ), u1(ξ) = 0 and u2(ξ) = 0 (16)

and find

A0 =
1
4
GRe

(
1− ξ2 +

ξ2

µT

)
, A1 =

G3Re3(µT − µB)
32µT

ξ4, A2 =
Re5G5(µT − µB)

2µT − 3µB
192µ7

T ξ6. (17)

And the resulting blood velocity profile is expressed as

us(r) =
ReG

4

[
1− ξ2 +

1
µT

(ξ2 − r2)
]

+
G3Re3(µT − µB)

32µT
(ξ4 − r4)ε+

Re5G5(µT − µB)
2µT − 3µB

192µ7
T (ξ6 − r6)ε2 (18)

Note that if the drop volume fraction tends to zero (φ → 0), the blood velocity profile tends to the plasma layer velocity
profile.
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3. Intrinsic Viscosity

In this section we solve the flow and calculate the intrinsic viscosity of the blood. It is calculated by the equality of
the core flow and a Poiseuille law with the intrinsic viscosity µs as follows

πR2U =
πR4

8µs
G

ρU2

R
. (19)

The Eq. (19) results in the dimensionless intrinsic viscosity, expressed as

µs

µp
= G

ρRU

µp8
=

GRe

8
. (20)

The dimensionless core flow is calculated by the integral

Q̃

π
=

∫ 1

0

2u(r)rdr =
∫ ξ

0

2us(r)rdr +
∫ 1

ξ

2up(r)rdr, (21)

that results in the following expression

Q̃

π
=

ReG

8
f1 +

(
ReG

8

)3

f2ε +
(

ReG

8

)5

f3ε
2, (22)

where

f1 =
ξ4

µT
− ξ4 + 1, f2 =

32
3µ3

T

(
1− µB

µT

)
ξ6, f3 =

128
µ5

T

(
2− 5

µB

µT
+ 3

µ2
B

µ2
T

)
ξ8. (23)

Since the dimensionless flow Q̃ = π, the intrinsic viscosity is the solution of the following equation

µs

µp
f1 +

(
µs

µp

)3

f2ε +
(

µs

µp

)5

f3ε
2 − 1 = 0 (24)

To solve the Eq. (24) we use a iterative method of the successive substitutions described in (Hinch, 1997)with the recursive
equation expressed as

µi+1 =
1
f1

µi − (µi)
3 f2

f1
ε + (µi)

5 f3

f1
ε2. (25)

where µi are dimensionless terms, given by

µ1 =
1
f1

, µ2 =
1
f1
− f2

f4
1

ε, µ3 =
1
f1
− f2

f1

(
1
f1
− f2ε

f4
1

)4

ε− f3

f1

(
1
f1
− f2ε

f4
1

)5

ε2. (26)

resulting in the following closed expression for the intrinsic viscosity

µs

µp
=

1
f1
− f2

f4
1

ε +
(

3f2
2

f7
1

− f3

f6
1

)
ε2 (27)

4. NUMERICAL SOLUTION

In this section the core flow governing equation are solved numerically. Once numerical solution is validated by the
asymptotic solution presented in §3. the intrinsic viscosity may be evaluated in more extreme regime of the flow. In other
words the parameter ε is not necessarily small.

First, a Newton-Raphson method is used in Eq. (8) to calculate

f(r) =
du

dr
(28)

Using two Taylor expansions of the velocity profile, about −∆r and ∆r, for central finite difference, we find

ui+1 − ui−1 = 2∆r
du

dr
(ri) = 2∆rf(ri). (29)
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Figure 4. Dimensionaless intrinsic viscosity of blood as a function of the cappilary number for two values of ξ. Solid line
represents ξ = 1.0, dashed line ξ = 0.98

where i is an iteration index. Now Eq. (29) results in a set of n algebraic equations with a three-diagonal coefficient
matrix namely




0 −1 0 0 0 ... 0
1 0 −1 0 0 0
0 1 0 −1 0 0
...

. . .
0 ... 0 0 0 1 0




n× n

·





u1

u2

u3

...
un





=




2∆rf(r1)
2∆rf(r2)
2∆rf(r3)

...
2∆rf(rn)




(30)

The system in Eq. (30) has been solved by a self contained Compaq Visual Fortran 6.0 code to solve three-diagonal
matrixes systems that results in the velocity profile of the flow ui. The dimensionless flow Q̃ is then calculated by a
trapezoidal numerical integration.

In order to evaluate the intrisic viscosity of the flow numerically we define the function:

G(Re) = Q̃− π (31)

Using a Newton-Raphson iterative method to calculate the parameter ReG, say

Renew = Reold − G(Re)
G′(Re)

, (32)

The new Reynolds number is calculated and the flow is solved in a loop until |Reold − Renew| < Tol, where tol is a
tolerance of 10−3 and the dimensionless intrinsic viscosity is calculated by the expression of Eq. (20)

5. RESULTS

The model based on a high viscosity dilute emulsion predicts satisfactory a shear thinning behavior of the blood. The
deformation and orientation in the flow direction of the prototypes cells cause the decreasing of the intrinsic viscosity.
In vitro experiments show that 75% of the viscosity decrease is a result of the hemolisis of red cells aggregation where
25% is due to the red cell deformation in response to increase shear stress (Lipowsky, 2005). Figure (4) shows the plot
of the dimensionless intrinsic viscosity of blood as a function of the dimensionless shear rate (i. e. Capillarity number).
The lower dashed curve represents the core flow numerical solution with a cell-depleted layer of δ/R = 0.02 and the
higher solid curve is the solution without the plasma layer (i. e. δ/R = 0). The dashed-dots curves are the asymptotic
solutions witch are in good agreement with numerical solution for Ca < 20 . The lower viscosity of the core flow in
comparision with the fulfilled emulsion tube states a skimming effect due to the presence of the plasma layer observed by
in experimental results (Sutera and Skalak, 1993).

As Fahraeus and Lindqvist, 1931 pointed out the viscosity of blood decrease with the micro-vessel diameter (Pries
et al., 1992). Actually the core flow model proposed explored has shown blood viscosity decreasing R/δ < 50. Expe-
rimental data in long tubes with diameter less than 300µm show precipitous decrease in intrinsic viscosity (Popel and
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Jonhson, 2005). This behavior decrease the heart pump work to win the pressure difference in microcirculation which
correspond 80% of the pressure difference between the aorta and vena cava (Popel and Jonhson, 2005). Figure (5) shows
the decrease of the intrinsic viscosity of flow solution as a function of the dimensionless radius R/δ. The dashed curve
represents in the core region a dilute emulsion of high viscosity ratio with 30% of volumetric fraction, the and the dots
are the viscosity law fit from Pries et al., 1994, of in vivo observations 30% of hematocrit.

The difference between the viscosity law and the emulsion core flow prediction is approximated 20%. This difference
can be explained by the absence of vessel wall irregularities, witch is markable in the blood flow and increase the blood
viscosity substantially.

At the low level of microvascular hematocrit found in most tissues in the normal flow state, the intrinsic viscosity varies
linearly with microvessel hematocrit (Lipowsky et al., 1980). The emulsion core flow solution presented shows a close
linear relation µs/µp × φ in Fig. (6). This result can be used to estimate the intrinsic viscosity of blood due to abnormal
hematocrit in blood with pathology. It is important to emphasize that the emulsion core flow solution do not predicts
the intrinsic viscosity behavior with the drop volume fraction φ > 0.3 with accuracy due to the dilute theory. Figure (6)
shows however a good qualitative agreement between the prediction and experimental results in vitro for φ < 40.

In red cells, the parameter λ is related to the cytoplasm and membrane structures, i. e. related to λm of Tab. (1), which
define the deformability of the cell. As exposed in §1.1, λm is a significant physical parameter to the microcirculation
rheology. The emulsion core flow solution presented in this article shows approximated null variation of intrinsic viscosity
for values λ > 20. For values of λ < 20 the intrinsic viscosity decrease with λ. Pathologies such as genetic alterations
in cytoplasm, and inadequate ATP supply to support the ion transport systems may result in abnormal λ once these

0

0.5

1

1.5

2

2.5

3

3.5

10 100

µs

µp

R
δ

Figure 5. Dimensionless intrinsic viscosity of the blood as a function of the aspect ratio R/δ for the different hematocrit.
Open circle are in vivo experimental observations with hematocrit of φ = 0.3 and error of 0.25. The solid line is the core

flow numerical results for volume fraction of φ = 0.3.
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Figure 6. Intrinsic blood viscosity as a function of the cell volume fraction (Hematocrit). Dashed line represent the core
flow model results, the solid line a linear fit and black fill circles are experimental results.
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Figure 7. Dimensionless intrinsic viscosity as a function of the viscosity ratio between cell prototypes and plasma

pathologies lead to abnormal deformability of cells (Chien, 1987,Mohandas and Evans, 1998, Mohandas and Shohet,
1981). The result, with experimentation, may help in calculate an estimated intrinsic viscosity of a blood with pathologies
that leads to λ < 20. It is important to remember that the adopted theory consider a low deformable cell prototype, i. e.
λ > 1.

6. CONCLUSION

The core flow of high viscosity emulsion shows a shear thinning behavior starting in Ca ≈ 10. In the present model,
the deformation of cell prototypes are the only mechanism to provoque the shear thinning, as long cells aggregation due
to the proteins composition of plasma are neglected.

The plasma skimming layer of thickness 2% of microvessel radius decrease the intrinsic viscosity for any Capillarity
number in comparison of a fulfilled tube with emulsion. It leads to newtonian limits in low Capillarity number and infinity
capillarity under the Taylor viscosity limit and Blob viscosity limit respectively, for homogeneous emulsions.

The difference between the intrinsic viscosity predicted by the emulsion core flow model and the results of observation
to hematocrit of 45% is about 20%. The monodisperse emulsion of high viscosity ratio drops is in a good qualitatively
agreement with in vivo experiment measurements. The discrepancy in caused by the absence, in the model, of significant
microcirculation characteristics such as irregularities in the microvessel wall prototype, cell aggregation, cell prototype
deformation due to cell-cell interactions, leucocytes and proteins distribution in the microvessel, biconcave cell format,
plasma flow through vessels wall. To fit experimental results, we suggest the analytical following equation, derived from
Eq. (27)

µs

µp
=

C1

f1
− C2

f2

f4
1

ε + C3

(
f2
2

f7
1

− C4
f3

f6
1

)
ε2, (33)

where Ci are empirical constants and have no physical meaning.
For pathologies that affects the hematocrit and cell deformation, the results of the high viscosity emulsion model

permits a preliminary prediction of the intrinsic viscosity of blood by the variation of cell prototype volume fraction and λ
respectively. The results in Figs. (6) and (7) would be used to predict the intrinsic viscosity of blood value in such cases.
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