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Abstract. Bone is a special category of material, first because is a living tissue, in addition its mechanical properties 
changes remarkably with position, also its mechanical properties under compression differ from the tensile ones. The 
proposition of failures criteria to model bone tissue pass by the utilization of well establish criteria, as the ones based 
in maximum shear stress or based in distortion energy developed for ductile metals, or the ones for brittle materials as 
the ones based in maximum strain. As bones are remarkably anisotropic, some authors have suggested the utilization 
of criteria for composite materials. A simple model of a human femur is presented, loaded by a representative 
combination of axial, torsional and flexural loads. The most representative criteria were analyzed. A couple of more 
representative failure criteria are used to estimate the factor of safety and the angle of initial fracture at external 
surface of bone model. 
  
Keywords: failure criteria, long bones, modeling 

 
1. INTRODUCTION  
  
Bone is a material that is non-homogeneous, porous, anisotropic and is continuously remodeled as living tissue. There 
are two types of bone, the trabecular with pores (50% to 95%) interconnected and filled with marrow and the cortical 
with pores (5 to 10 %) and Haversian canals. The cortical bone surrounds trabecular bone, forming a external shell. 
Bones can grow, self-repair and be continuously remodeled by specialized cells that produce bone, the osteoblasts and 
cells that remove bone, the osteoclasts (Doblaré, 2004). These characteristics difficult the proposition of a specific 
failure criterion. Many authors as (Keyak, 2000) made attempts to use criteria of failure originally proposed to model 
behavior of metals (ductile and brittle) or composite materials to model bone behavior. One way of checking the 
applicability of various criteria to long bones is to compare results of experimental data of referred literature with the 
results of utilization of a numerical approach as finite element method (FEM). Another way is to use an analytic 
approach. In this work, after analyzing several failure criteria, a stress analysis of an analytic simple model of a human 
femur is utilized to make a comparative analysis of the applications of each of literature most successful failures 
criteria, to estimate factor of safety and initial angle of fracture at external surface of bone model.  
 
2. STRESS ANALYSIS 
  
The stress analysis of a complex structure like a human long bone, as a femur, can be done through many ways, as 
numerical, experimental and analytic approaches. The numerical approach is probably the most popular nowadays 
mainly in function of the wide availability of computers and the utilization of specialized softwares, as the ones based in 
FEM. The experimental approach for another hand has an unquestionable advantage of working with real data. The 
implementation of former approaches can be very expensive to mention one disadvantage. Although an analytic 
approach tend to produce only simplified models of a more complex reality, it has the advantage of showing explicitly 
the relationship between main variables. 
A simple analytic model of human femur is proposed with the main objective of use it to cover every stage of stress 
analysis from the definition of geometry, transversal section, loading, constrains and materials; up to the final 
achievement of, for example, the initial angle of failure at external surface of bone model. To carry out this objective 
several simplification had to be made in this simple femur model as, considering the transversal section as an uniform 
hollow circle (only considering the effect of cortical bone), considering only a static force P acting at the head of femur 
(not considering the effect of tendons positioned sideways), considering that the femur is simple supported and its 
material failure behavior can be modeled by one of the proposed failure criterion.  
The steps covered by the stress analysis of a point at external surface of bone model can be resumed as: The internal 
loads yx FF , and zF are obtained by the utilization of direction cosines at P.  The internal moments yx MM , and zM  
are obtained by the utilization of definition of moment: PM ×∆= . These loads are regrouped as N, V, M and T and 
used to calculate stress components (normal and shear).  Mohr circle is then utilized to obtain principal stresses that are 
finally applied in a failure criterion.  
 



Figure 1 shows the representation of a force P acting at the head of femur. In a generic section the effect of P is 
equivalent to three forces components yx ,FF and zF   and three moments components yx M,M and zM . Also is 
equivalent to forces: axial N and shear V and to moments: bending  M and torsional T.    
 

 
    (a)             (b)                 (c) 

 
Figure 1: (a) A force P acting at the head of femur, (b) three forces components yx ,FF and zF  and three moments 

components yx M,M and zM and (c) forces N and V , moments M and T  and angles ,βα , γ and θ . 
  
where, α  is the angle with the direction  V, β  is the angle of neutral axis M and γ  is the angle that determine the point 
of interest, all of them referred to X axis (positive at γ  = 0°). θ  is a angle at bone model external surface. 
 
The relationship between yx ,FF , zF  and  N, V and between yx ,MM , zM  and  M , T are presented: 
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where, yx ∆∆ , and z∆ are respectively the components of position vector ∆  that begins at the center of a generic 
section and ends at the point of contact of force P. 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

In this introductory model the transversal section of bone is modeled as a hollow circle. The axial stress Nσ  expression 
is: 

A
N

N =σ              (5) 

            
The bending stress Fσ  expression is:  
 

I
yM f

F =σ                (6) 

 
where, 
 

( )22
ie rrA −= π , ( )βγ −= sinry ef  and  ( )44

4 ie rrI −=
π       

        
where, er  is the outer radius, ir  is the inner radius, A is the area of transversal section, fy is the perpendicular distance 
from neutral axis to surface of bone and I is the second moment of area. 
 
Figure 2 shows angles and variables used at bending stress and transverse shear stress expressions: 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)      (b) 
 

Figure 2: Angles and the variables to use in: (a) bending stress expression and (b) transverse shear stress expression. 
 
The transverse shear stress expression Vτ  is: 
 

It
VQ

V =τ              (7) 

 
The torsional stress expression Tτ  is: 
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where, 
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where, Q is the first moment of area, t  is a width at a distance yc from hollow circle center and J is the polar second 
moment of area. 
. 

 



The Mohr circle is used to access principal stresses and maximum shear stress of a determinate point at bone model 
external surface, as well as its respective principal planes, as shown at Figure 3. 
 

 
Figure 3: Mohr circle. 

 
The principal stresses 1σ  and 3σ  and the maximum shear stress 

maxxyτ for this Mohr circle are: 
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Where, FNy σσσ +=  and TVxy τττ += . Numbers 1, 2 and 3 represent the same point at external surface of bone 

model of fig.1.c, at various inclinations: 1 correspond to θ  = 0°, 2 correspond to the angle θ  of 1σ (notice that the 

normal fracture angle is o90+= θθσ ) and 3 corresponds to the angle were shear stress is maximum 

°+= 45* θθ (notice that the shear fracture angles are *1 θθτ =  and o90*2 +=θθτ ). Angle θ  is calculated as follows:  
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1   (Notice that the angle of Mohr circle is θ2 and the angle at bone model surface is θ )  (11) 

 
3. FAILURE CRITERIA 
 
Failure criteria are used to find out if a material will fail when submitted to a certain combination of normal and shear 
stresses in comparison with a simple test, as tension test, of same material. The failure can be, for example, by yielding 
or by rupture. In fact, there is no way of calculate theoretically the relation between stress components with yielding of 
a three-dimensional state of stress with the yielding of a uniaxial tensile test (Crandall, 1978). It is even more difficult to 
present failure criterion to such an unusual material like bone. To overcome such difficulties various authors as (Keyak, 
2000) tried to use well known criteria created for ductile, brittle and composite materials to bone tissue. For failure 
criterion based in yielding, for example, there are six quantities that may be used (Boresi, 1985). The maximum 
principal stress, the maximum shear stress, the maximum strain, the strain energy density, the strain energy density of 
distortion and the maximum octahedral shear stress.  
The maximum principal stress, also called Rankine criterion, has limited applicability in ductile materials, but works 
properly in brittle materials (only changing yS by uS , respectively yielding strength and ultimate strength).  
The maximum shear stress, also called Tresca criterion, uses the idea that yielding begins when maximum shear stress 

maxτ  reach the value of the yield shear stress yS S.S
y

50= , that occurs in the beginning of  yielding in a tensile test.  
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The maximum strain, called Saint-Venant criterion, has limited applicability in ductile materials, but works properly in 
brittle materials (only changing yε by uε , respectively yielding strain and ultimate strain).  
The strain energy density propose that yielding begun when the strain energy per unit of volume (or strain energy 
density) absorbed by a point of material is equal to strain energy density of the same material in the beginning of 
yielding in a tension test.  
The strain energy density of distortion, also called von Mises criterion, uses the experimental fact that hydrostatic 
pressure have little effect in beginning yielding in ductile materials, in other words, variations of a volume of material 
not begin yielding. Only  distortion of a volume of material can begin it, so this criterion propose that yielding begun 
when the strain energy density of distortion absorbed by a point of material is equal to strain energy density of 
distortion of the same material in the beginning of  yielding in a tension test.  
The maximum octahedral shear stress, where the octahedral planes are the eight symmetrical surfaces relative to 
principal directions, which normal stresses are hydrostatic and the shear stresses are called of octahedral shear stresses, 
states that beginning of yielding is supposed to occur whenever octahedral shear stress equals the octahedral shear stress 
for the same material submitted to beginning of yielding in a tension test.  
 
3.1. Ductile criteria 
 
Two of these six criteria of failure based in yielding are usual for determination of beginning of yielding of ductile and 
isotropic materials. They are Tresca and von Mises criteria. The Tresca criterion, for plane stress, predicts beginning of 
yielding whenever one or more of following expressions are true: 
 

yA S=σ , yB S=σ  or yBA S=−σσ         (12)
   
Where, yS  is yielding strength, which is supposed be the same in tension and compression for ductile and isotropic 
materials. Aσ and Bσ are two of three principal stresses 1σ , 2σ  and 3σ . The von Mises criterion can be represented by 
the following expressions (material begins to yield when yeq S=σ ): 
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Notice that for ductile, isotropic materials, like steel, yielding is based only on the magnitude of principal stresses and 
not in principal stresses orientation, and as hydrostatic state of stress not affect yielding, only the magnitude of 
differences between principal stresses are important (Crandall,1978). A graphical comparison between Tresca and von 
Mises criteria, generated by a VB program, using expressions (12) and (14) is shown at Fig. 4: 
 

 
Figure 4 - Graphical comparison between Tresca and von Mises criteria. 

 



Figure 4 shows Tresca and von Mises criteria (notice that the expressions (12) and (14) must be divided by yS  to 

reproduce fig.4): Every combination of ySAσ and ySBσ  that is inside its graphical representation is elastic. At or 
outside borders it is plastic. Notice that exists combinations that already yielded if consider Tresca criterion but it is still 
elastic if consider von Mises criterion.  
 
3.2. Brittle criteria 
 
For brittle materials, like cast iron, five classical criteria are shown: Rankine, Saint-Venant, Coulomb-Mohr, Coulomb-
Mohr modified and Hoffman. These criteria recognize differences between tensile strength utS and compressive 
strength ucS− , which occurs to bones.  
The Rankine criterion, also know as Maximum Normal Stress criterion, for plane stress, predicts that the fracture will 
occur whenever the most positive principal tensile stress reach the tensile strength utS  or the most negative 
compressive principal stress reach the compressive strength ucS−  of material: 
 

The material will break if utA Sσ =  , ucA Sσ −=  , utB Sσ = or ucB Sσ −=      (15) 
 
The Saint-Venant criterion, also known as Maximum Normal Strain criterion, for plane stress, states that fracture will 
occur whenever the most positive principal strain reach the tensile ultimate strain utε  or  the most negative compressive 
principal strain reach the compressive ultimate strain - ucε of material: 
  

The material will break if utA εε = , ucA εε −= , utB εε = or ucB εε −=      (16) 
 
The expression (16), with principal strains Aε and Bε , must be transformed in an equivalent expression that shows the 
relations with Aσ and Bσ . To accomplish it elastic stress-strain relations are used (Beer, 1982): 
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Where ν is the Poisson ratio and the coordinates of the four extremities of figure of plane stress of  Saint-Venant 
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The Coulomb-Mohr criterion is variation of Mohr criterion constructed with the aim of three simple tests: tension, 
compression and torsion. Coulomb-Mohr criterion, also know as Internal-Friction criterion, only needs tension and 
compression tests. In a plane   x τσ two Mohr circles, correspondent to tension and compression tests are drawn, 
forming a classical figure, where every combination that is inside the set of the two tangent lines and the two circles are 
safe. In plane stress, as a function of two principal stresses Aσ and Bσ , the material will break as shown:  
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B
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A
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Notice that Aσ and Bσ cannot be zero at same time.        (18) 
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Experimental observations of failure of brittle materials show that Coulomb-Mohr criterion is non conservative in 2nd 

and 4th quadrants. An empirical adaptation on Coulomb-Mohr criterion called Coulomb-Mohr modified criterion was 
proposed to overcome it. In plane stress, as a function of two principal stresses Aσ and Bσ , the material will break as 
shown:  
 
1st quadrant and  3rd quadrant are the same of expression (18),  2nd quadrant ( )0≥Bσ : if 0≤≤− AutS σ  then utB S=σ  

or if utAuc SS −<≤− σ  then 
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             (19) 
 
The Hoffman criterion is referred by (Doblaré, 2004) and (Keyak, 2000) as criterion for brittle material used to predict 
fracture load and fracture pattern of proximal femur. The material breaks as shown:  
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where, iC  are materials parameters defined as: 
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Figure 5 show graphically a comparison between failure criteria of brittle materials, generated by a VB program, using 
expressions (15), (17), (18), (19) and (20) (notice that these expressions must be divided by utS to reproduce fig.5):  
 

 
 

Figure 5 - Graphical comparison between Rankine, Saint-Venant, Coulomb-Mohr, Coulomb-Mohr modified and 
Hoffman criteria. 

 
Notice that for fig. 5 was used utuc SS 2−= . For Saint-Venant criterion was used 2=α and 3.0=ν . Every 
combination of Aσ and Bσ  that is inside every graphical representation is elastic. At borders of graphical 
representation of each criterion the material breaks. Also notice that for Coulomb-Mohr modified criterion the points 
( ) ( )1,1, −=utButA SS σσ  and ( ) ( )1,1, −=utButA SS σσ  represents pure torsion loading condition. 
 
 
 



3.3. Composite materials  criteria 
 
Bone tissue has porous medium which failure is affected by all three stress invariant, with different strengths in tension 
and compression, and sensitive to hydrostatic pressure. Different measures of micro structure can be used to model bone 
material. Cowin introduced the term fabric tensor in bone mechanics. It was defined as “any positive definite, second-
rank tensor that gives a local description of the architectural anisotropy, also called fabric”. Many works has evidence 
that the fabric approach can be utilized for quantification of anisotropy of bones (Odgaard, 1997).  
For non-isotropic materials, like composite materials, three criteria are shown: Tsai-Hill, Tsai-Wu and Cowin.  
The Hill criterion is a modification of von Mises criterion to include effects of induced anisotropic behavior in initially 
isotropic metals during plastic deformation (Gibson, 1994): 
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where, the constants A, B, C, D, E and F are experimentally obtained through yield tests in six different directions 
assuming that yield strength are the same in tension and in compression: 
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where, iY  are the yield strength along axes 1,2 and 3, and ijY  are the shear yield strength along axes 12, 23 and 31. 
The Tsai-Hill criterion is an extension of Hill criterion for orthotropic composite material. The equation of Tsai-Hill 
criterion is: 
 

1
2

2
12

2

2
2

2
21

2

2
1 =++−

LTTLL ssss
τσσσσ

          (22) 

 
where, 
 

1YsL = , 32 YYsT == and 12YsLT =  
 
The Tsai-Wu criterion express in terms of the stress tensor and two material dependent tensors. The basic hypothesis is 
the existence of a failure surface in the stress space of the following form (Doblaré, 2004): 
 

( ) 1σσFσFσf jiijiik =+=  for i, j, k = 1,2, …6        (23) 
 
where, iF  and ijF  are tensors of material and iσ  are the principal stresses. 
The main disadvantage of Tsai-Wu criterion, as is usual in composite materials criteria, is the large number of constants 
that have to be determined experimentally. Also (Pietruszczak, 1999) refer that porous materials, as bones, are sensitive 
to third stress invariant and this criterion “may quite inadequate to describe the conditions at failure”. 
Cowin proposed a fracture criterion useful for porous materials and/or composites, based on the properties of the 
homogenized microstructure. The fracture criterion is a function of the stress state, the porosity and the fabric tensor 
(Doblaré, 2004): 
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The symbols  −+

ii σ,σ  and ijσ are the ultimate strength in tension, compression and shear respectively and iiiiii G,F  

and iijjF  are tensors, function of porosity and fabric tensor A. 
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Although many well established failure criteria were tentative used as failure criteria for bones, until now no model 
truly describe it. Apparently contrasting conclusions are obtained about which failure criterion describe more closely 
the failure behavior of bones. For one hand experimental evidences points that the use of failure theories as based on 
strain energy density of distortion, as von Mises criterion and based in maximum shear stress theories, as Tresca 
criterion, furnish reasonable performance, even not recognizing the existence of differences between tensile and 
compressive proprieties of bone material. For another hand other experimental evidences points to failure theory based 
in the maximum strain theories, as Saint-Venant criterion that recognizing the existence of differences between tensile 
and compressive proprieties, produce also reasonable results (Keyak, 2000). Finally the composite material criteria 
recognize the existence of differences between tensile and compressive proprieties and also account for the interaction 
between stresses, requires a large number of experimental constants that makes almost impracticable its utilization. 
 
4. EXAMPLE 
 
The data of an experimental test with a human femur was selected from specialized literature (Bergmann, 2001) to enter 
at the simple analytic model with inputs of geometry and loading.  The section of human femur bone chosen has 
external diameter D = 0.032 m and internal diameter d = 0.016 m, the component of forces were Fx = -415 N,               
Fy = -424 N and Fz = -1654 N. The components of position vector were x∆  = 0.07 m, y∆  = 31067.1 −⋅  m and            

z∆  = 0.129 m. Using the expressions from (1) to (11), with the aid of a software like MathCad,  the principal stresses 

Aσ , Bσ and maximum shear stress maxτ  were calculate at bone model external surface, of chosen section, for 
o3600 <≤ γ . Also the normal fracture σθ and shear fracture 1

τθ  and 2
τθ  angles were calculated at bone model external 

surface, of chosen section, for o3600 <≤ γ .    Figure 6.a shows the principal stresses Aσ  and Bσ , and maximum shear 

stress maxτ  in function of angleγ . Figure 6.b shows the normal fracture angle σθ  and shear fracture angles 1
τθ  and 2

τθ   
(the two shear fracture angles have a 90º difference), all at external surface of bone model, in function of angleγ : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 

Figure 6: (a) Principal stresses ( )γσ A  and ( )γσ B , and maximum shear stress ( )γτ max  and (b) angles σθ , 1
τθ and 2

τθ . 
 
From fig. 6a it is clear that both =Aσ 31 MPa and =maxτ 16 MPa are maximum at o320=γ . Figure 6b shows the 

angles σθ , 1
τθ and 2

τθ  in function of γ . Notice that the lines aren’t the surface of fracture but the inclination of fracture 

surface at every γ . In this example the initial fracture angles would be ( )320 101θσ =o o , ( )1 320 56τθ =o o and 

( )2 320 146τθ =o o , when factor of safety of each criteria reach 1. To estimate the factor of safety n two different failure 

criteria were used, Tresca and Saint-Venant. The bone properties used were =ytS 115 MPa, =utS 133 MPa, =ucS 195 

MPa and =ν  0.371 (Rapoff, 2007). From fig.6a at chosen point is clear that Aσ is positive and Bσ is negative 
configuring fourth quadrant point of BA σσ ×  plane. Using expressions (12) and (17) is possible to estimate the factors 
of safety =Trescan   3.6 and =−VenantSaintn   3.7. If loading condition increase to the point of n =1 (at the same load line), 
then Tresca criterion would predict a initial shear fracture respectively at angles 56º and 146° and Saint-Venant criterion 
would predict a initial normal fracture angle of 101°. 



5. CONCLUSIONS 
 
Various existent failure criteria, for ductile, brittle and composite materials, were analyzed and compared. A couple of 
existent criteria that presented better correlation with experimental data of referenced literature were selected. A stress 
analysis of a simple analytic model of human femur was used in conjunction with each select failure criteria, Tresca or 
Saint-Venant, to estimate comparatively the factor of safety and the initial fracture angle at external surface of bone 
model. With the development of this research the analytic model will be improved to include the loading effect of 
tendons positioned sideways, the effect of trabecular bone and transversal sections different from a hollow circle. Also 
it is in course the utilization of finite element method to implement a more realistic model of human femur.  
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