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Abstract. The behavior of inclined slender elastic rods subjected to axial forces and distributed load is discussed in 
this paper. Mathematical models and numerical solutions are developed for small and large displacements. A double-
hinged boundary condition is assumed and the analysis is carried out for different values of non-dimensional weight 
and angle of inclination. The mathematical formulation results from considering geometrical compatibility, 
equilibrium of forces and moments and constitutive relations. For large displacements a set of six first order non-
linear ordinary differential equations with boundary conditions prescribed at both ends is obtained. This two-point 
boundary value problem is numerically integrated using a three parameter shooting method. When small 
displacements are assumed the problem simplifies and a power series solution may be conveniently employed. The 
results for both simulations are presented, compared and discussed. 
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1. INTRODUCTION 

 
The subject of buckling, post-buckling and large deflection analyses of slender elastic rods has developed since the 

early classical contributions from Bernoulli, Euler and Lagrange in the 18th century, see Love (1944).  This class of 
problem may exhibit interesting phenomena such as limit load, bifurcation, jump and hysteresis, given the non-linear 
nature of geometrical, physical or load assumptions. 

Buckling and post-buckling of weightless rods have been addressed, for instance, by Gurfinkel (1965), Wang 
(1997), Tan and Witz (1995), Lee and Oh (2000) and Vaz and Silva (2002).  The use of long submersed columns such 
as marine risers and drill-strings in the offshore oil&gas industry motivated the study of buckling and initial post-
buckling of vertical rods subjected to variable axial forces resulting from self-weight. In Lubinski (1950), Huang and 
Dareing (1966, 1968 and 1969), Plunkett (1967), Wang (1983), Bernitsas and Kokkinis (1983a-b and 1984a-b), 
Kokkinis and Bernitsas (1985 and 1987), Vaz and Patel (1995), Patel and Vaz (1996), Jurjo et al (2001), Vaz and 
Mascaro (2005) the rod buckling, initial post-buckling and post-buckling solutions are developed. 

Sampaio Jr and Hundhausen (1998) employed generalized hypergeometric functions to solve the small displacement 
problem of inclined beam-columns. In this situation the gravitational field not only imposes a variable axial force 
(problem is no longer symmetrical) but it also imparts to the rod a lateral distributed load. In this paper a large 
displacement formulation is developed, a numerical solution is obtained and results are compared. This paper has a 
potential practical application where a heavy slender structure is supported in two points, such as in the areas of drill 
string mechanics, global riser static analysis and flexible pipe jumper configuration, for instance. 

 
2. THE MATHEMATICAL MODEL 

 
Consider an inextensible slender uniform rod with length L  and self-weight (per unit length) ρ  supported by two 

points at an inclination β  with respect to the horizontal axis, as shown in Figure 1a. The self-weight simultaneously 
modifies the distribution of longitudinal and lateral loads, respectively P  and H . In addition pure bending formulation 
is assumed and the material is linear elastic so the bending stiffness is given by EI , where E  is the Young’s Modulus 
and I  is the second moment of cross-sectional area. The problem can be load or displacement controlled so let Δ  be 
the axial displacement as shown in Fig. 1a. 



 
Figure 1a - Schematic of an Inclined Deflected Vertical Rod Subjected to Self-Weight. 
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Figure 1b – Infinitesimal Element of Rod. 

 
The governing equations result from geometrical compatibility, equilibrium of forces and moments and constitutive 

relations. A system of six first order non-linear ordinary differential equations describes the large displacement behavior 
of initially inclined rods subjected to self-weight. 

 
2.1 Geometrical Equations 

 

Geometrical restrictions are obtained from trigonometrical relations applied to an infinitesimal rod element dS  (see 
Fig. 1b): 
 

θcos
dS
dX

=  (1a)

  

θsin
dS
dY

=  (1b)

 
where S  is the rod arc-length ( LS0 ≤≤ ), ( )Y,X  are the Cartesian coordinates of the deflected rod and θ  is the angle 
between the tangent and the X -axis. Furthermore the curvature Κ  may be defined by: 

 

dS
θd

Κ =  (1c)

 
 
 

β 
g 
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2.2 Equilibrium of Forces and Moments 

 
A schematic of the internal forces and moments in the rod infinitesimal element is shown in Fig. 1b. The 

equilibrium of longitudinal and lateral forces and bending moments, respectively yield: 
 

βρ sin
dS
dP -=  (2a)

  

βcosρ
dS
dH

=  (2b)

  

θθ cosHsinP
dS
dM

+= -  (2c)

 
where M  is the bending moment. 

 
2.3 Constitutive Relations 

 
Assuming linear elastic, homogeneous and isotropic materials, and considering the state of pure bending results in: 
 

ΚEIM =  (3)

 
Therefore, substituting Eq. (3) into (2c) results: 
 

( )θθΚ sinPcosH
EI
1

dS
d -=  (4)

 
2.4 Boundary Conditions 

 
A set of six boundary conditions must be defined and for the double-hinged rod they may be specified as: 
 

( ) 0)L()L(YX)L(X)0()0(Y0X 1 ===−=== ΚΚ  (5)

 
where 1X  is the top end X-coordinate ( Δ−= LX 1 ). The influence of the boundary conditions on the rod response is 
significant and it can be easily approached with same methodology presented here. 

 
2.5 The Governing Equations 

 
It is obviously convenient to reduce the set of differential Eqs. (1a-c), (2a-b) and (4) to a non-dimensional form 

using the following change of variables: sLS = , yLY = , xLX = , LκΚ = , 3LEIρρ = , 2LEIpP =  and 
2LEIhH = , where 1s0 ≤≤ . Hence: 

 

θcos
ds
dx

=  (6a)

  

θsin
ds
dy

=  (6b)

  



κ
ds
θd

=  (6c)

  

βρ sin
ds
dp

-=  (6d)

  

βcosρ
ds
dh

=  (6e)

  

θθκ coshsinp
ds
d

+= -  (6f)

 
where )y,x(  constitute the deflected rod non-dimensional Cartesian coordinates, s  the non-dimensional arc-length, 
κ the non-dimensional curvature, θ  the angle formed by the curve tangent and the longitudinal axis, p  and h  
respectively the non-dimensional longitudinal and lateral loads and ρ  the non-dimensional weight. Furthermore the 
boundary conditions given by Eq. (5) may be also made non-dimensional: 

 
( ) 0)1()1(yx)1(x)0()0(y0x 1 ===−=== κκ  (7)

 
where δ−= 1x1  ( LΔδ = ). Eq. (7) represents non-movable and movable hinged conditions respectively at the lower 
and upper ends. 

 

3. THE SOLUTION FOR LARGE DISPLACEMENTS 

 
As the set of six first order non-linear ordinary differential equations and its boundary conditions characterize a two-

point boundary value problem, a technique may be employed to transform it into an initial value problem and allow a 
direct integration scheme. Three boundary conditions are given at one end ( ) 0)0()0(0 === κyx  whereas three other 
conditions are given at the other end, i.e. 0)1()1()1( 1 ===− κyxx , so ( )0h , ( )0θ  and ( )0p  must be found.  A shooting 
method, available in Mathcad, is employed to compute the initial missing values. This procedure may be summarized 
with the following main steps: (a) the set of differential equations is defined (i.e., equations (6a-f)); (b) the initial 
missing values are guessed (i.e., values for ( )0h , ( )0θ  and ( )0p  are guessed); (c) the boundary value endpoints are 
specified (i.e., 0)1()1()1( 1 ===− κyxx ); (d) a load function which returns the initial condition is established; (e) a 
score function to measure the distance between terminal and desired conditions is employed; (f) the equivalent initial 
conditions are calculated (i.e., the “exact” values for ( )0h , ( )0θ  and ( )0p  are calculated). From this point, a Runge-
Kutta high order solution algorithm is applied to solve the set of non-linear ordinary differential equations. 

 
4. THE SOLUTION FOR SMALL DISPLACEMENTS 

 
When small displacements are assumed dsdx ≅ , ( ) θθ ≅sin  and ( ) 1cos ≅θ , so a simplified equation is obtained: 
 

( )[ ] ( ) 003

3
hxcos

dx
dyxsinp

dx
yd

+=+ βρβρ-  (8)

 
where 0p  and 0h  are respectively the longitudinal and lateral loads at 0x =  and ρ,β  and 0p  are known. A solution 
for Eq. (8) may be obtained via Maclaurin series, yielding: 

 
( ) ( ) ( ) ( ) 0021 CxVhxUCxTCxS)x(y ++++=  (9)

 
where 0210 h,C,C,C  are constants and ( ) ( ) ( ) ( )xV,xU,xT,xS  are series functions given by: 
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(10)

 
Applying the boundary conditions results in the following linear problem: 
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(11)

 
where ( ) ( ) ( ) ( )xW,xR,xQ,xP  are the second differentiation of ( ) ( ) ( ) ( )xV,xU,xT,xS  respectively. 

 
5. ANALYSIS OF RESULTS 

 
A comparative study is carried out for power series (small displacements) and numerical (large displacements) 

solutions for several values of inclination ( 90,5.67,45,5.22,0=β  deg) and non-dimensional rod self-weight 
( 100,35=ρ ). Figs 2 and 3 respectively show the large displacement configuration for ρ  = 35 and 100. In both figures 
the geometrical configuration is plotted for 0.1,8.0,6.0,4.0,2.0,0=δ . The heavier and more inclined rod (i.e., ρ  = 
100 and deg90=β ) exhibits a more pronounced lower bulge. For horizontal rods ( 0=β ) the solution is, as expected, 
symmetrical but as the inclination increases the lateral displacement becomes more asymmetric. 
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Figure. 2a - Configuration for 35=ρ , 00=β  Figure. 3a - Configuration for 100=ρ , 00=β  
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Figure. 2b - Configuration for 35=ρ , 05.22=β  Figure. 3b - Configuration for 100=ρ , 05.22=β  
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Figure. 2c - Configuration for 35=ρ , 045=β  Figure. 3c - Configuration for 100=ρ , 045=β  
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Figure. 2d - Configuration for 35=ρ , 05.67=β  Figure. 3d - Configuration for 100=ρ , 05.67=β  
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Figure. 2e - Configuration for 35=ρ , 090=β  Figure. 3e - Configuration for 100=ρ , 090=β  

 
Figures 4 and 5 show the values of the non-dimensional variables 0h , δ , 0p , 0θ  and maxy  (maximum lateral 

deflection) when small and large displacements are considered, respectively for 35ρ = and 100. The comparison 
between results for small and large displacement formulations indicate when geometrical non-linear effects take place 
and must be included for a correct response characterization. 

In Figs 4a and 5a it is seen that 0h  is constant for 0=β  and varies more intensively for deg90=β . Observe that 
negative values for 0p  in Figs 4b and 5b indicate tensile forces. The change in behavior from a laterally and axially 
loaded rod to post-buckling phenomenon is evidenced in Figs 4c-d and 5c-d by comparing results for deg90=β  and 

deg90<β . 
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Figure 4a - δ  versus 0h  for 35=ρ  Figure 5a - δ  versus 0h  for 100=ρ  
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Figure 4b - δ  versus 0p  for 35=ρ  Figure 5b - δ  versus 0p  for 100=ρ  
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Figure 4c - 0θ  versus 0p  for 35=ρ  Figure 5c - 0θ  versus 0p  for 100=ρ  
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Figure 4d - maxy  versus 0p  for 35=ρ  Figure 5d - maxy  versus 0p  for 100=ρ  
 

6. CONCLUSIONS 

 
This paper presents formulation and solution for inclined elastic rods subjected to terminal forces and a gravitational 

field. The rod is assumed hinged in both ends. An analytical (power series) solution is obtained when small deflections 
are considered. The large deflection non-linear analysis is obtained from solving a complex two-point boundary value 
problem governed by a set of six first order non-linear ordinary differential equations. As expected the numerical and 
analytical solutions are in good agreement when displacements are kept small once the geometrical non-linearities do 
not significantly influence the results. In addition the results evidence a change in the response behavior as the rod 
becomes vertical and a post-buckling instability phenomenon takes place. The boundary conditions affect the rod 
response and it can be readily calculated with the methodologies developed here. 
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