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Abstract. In this work, unidirectional carbon fiber reinforced plastics (CFRP) with embedded NiTi shape memory alloy 
(SMA) wire actuators were developed using a universal testing machine equipped with a thermally controlled 
chamber. Beam specimens containing cold-worked, annealed and pre-trained NiTi SMA wires distributed along its 
neutral plane were fabricated. Several tests in a three point bending mode at different constant temperatures were 
performed. To verify thermal buckling effects, electrical activation of the specimens were realized in a cantilevered 
beam mode and the influence of the SMA wires are discussed.   
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1. INTRODUCTION  
 

Carbon Fiber Reinforced Plastics (CFRP) are especially important because of its wide potential application in 
aeronautic technologies. Because of their inherent high specific stiffness and strength, use of laminated composite 
materials has increased in the design of thin-walled structural components for aerospace vehicles, such as high-speed 
aircraft, rockets and spacecraft, all of which are subjected to thermal loads due to aerodynamic and/or radiation heating. 
Such thin walled laminated composite structures may become unstable at a relatively low temperature change and thus 
cause buckling in the elastic region (Lee & Choi, 1999; Choi et al, 2000). When CFRP is combined with shape memory 
alloy (SMA) fibers, smart hybrid composites are developed with many objectives, like improve creep and fatigue 
properties, or strengthen the composite, improve damping capacity, control the shape or vibration property of composite 
(Xu et al, 2003). However, few studies on the thermal buckling and post-buckling of a composite laminated structure 
with embedded SMA wire actuators exist in the literature. Two methods have been proposed for integrating SMA 
actuators into a composite; bonding the actuators within the composite matrix as a constituent and embedding the 
actuators within sleeves through the laminate. The work presented by Turner et al (2001) focuses on the former method, 
where prestrained actuators are bonded within the composite matrix and the boundaries of the structure serve also as 
mechanical restraints for the actuators. Thus, an inherently elevated thermal environment in service will activate the 
actuators, which act against the mechanical boundaries to adaptively stiffen the structure without control electronics or 
auxiliary power.  

In this work, an alternative route for production of CFRP – NiTi SMA laminated composites is proposed. For this 
one, a universal testing machine equipped with a thermally controlled chamber was mechanically adapted. Thermal 
buckling effects were verified by electrical activation of the specimens in a cantilevered beam mode and the influence 
of the NiTi SMA wires in three different states (cold-worked, annealed and trained) was analyzed.  

 
2. EXPERIMENTAL PROCEDURE 
 
2.1. Fabrication of the active beam specimens 
 

The CFRP-NiTi active composite in the form of small beams (125 x 24 x 1 mm3) were manufactured using an 
Instron universal testing machine (model 5582) equipped with a thermal chamber. It was employed the high 
performance tough epoxy matrix HexPly® 8552 unidirectional carbon prepregs from Hexcel Composites Inc. (England). 
The selected NiTi binary SMA wire of 0.29 mm in diameter, named alloy M, was supplied by Memory-Metalle Inc. 
(Germany) in a cold-worked state, without martensitic transformation. Firstly, the as-received NiTi wire was annealed 
at 400 oC for 900 s. Before fabrication of the active composite beams, a part of the NiTi SMA wires were stabilized by 
training using a thermal cycling under constant load procedure. Two meters of the heat-treated NiTi wire under a dead 
weight corresponding to a tensile stress of 200 MPa was submitted to 1000 heating and cooling cycles (contraction and 
expansion) using electrical resistive heating.  
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In fact, the designed active composite beam specimens incorporate the NiTi SMA wires in three different states: as-
received (cold-worked), annealed and trained. The actuator wires are evenly distributed along the neutral plane of the 
beam samples. 

To fabricate the CFRP-NiTi active composites in a hot pressure sandwich way, the universal testing machine was 
mechanically adapted as indicated in Fig. 1. In this design, the force produced in the machine parts (1) is transmitted by 
a pressure disk (2) to the stainless steel plate (3) and base (6). The NiTi actuator wires are equally spaced and oriented 
by two guides (5) and installed between the plate (3) and base (6). 
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Two layers of the CFRP prepreg are put below and above the NiTi wires as indicated in Fig. 2(a). In this system, the 
carbon fibers are aligned with the NiTi ones. After assembly between the plate and the base, the CFRP-NiTi system is 
installed in the thermal chamber of the testing machine to the hot pressure molding (Fig. 2b). Temperature evolution 
during the curing cycle is measured by a micro-thermocouple (type K, 80 µm in diameter) soldered on the base (Fig. 
2a). 

Figure 3 show the cure cycle and CFRP-NiTi specimens fabricated with the system of Fig. 2. The molding by 
uniaxial hot pressure was realized at 110 oC for 4 h under approximately 0.32 MPa followed by natural cooling into the 
thermal chamber, as can be noted in Fig. 3(a). Figure 3(b) show the four specimens fabricated by this procedure: 
without NiTi wires and embedding as-received, annealed and trained NiTi wires. 
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Figure 3. Fabrication of the CFRP-NiTi composites. (a) Temperature curing cycle. (b) Active composite beam 
specimens. 

 
 
2.2. Static characterization of the active beam specimens 
 

Specimens shown in Fig. 3(b) were tested in a three point bending mode and thermal buckling by resistive heating in 
a cantilevered beam mode, as indicated in Fig. 4. The bending tests were carried out at different constant temperatures 
between 30 and 90 oC, in steps of 10 oC, using the 5582 Instron machine and a distance among supports of 80 mm (Fig. 
4b). In these tests a central deflection of 3 mm was imposed to the specimens at a constant extension rate of 1 mm/min. 
For each temperature, ten force (F) – deflection (y) cycles were performed. 
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Figure 4. Assembly for testing the CFRP-NiTi active composites. (a) Three point bending tests. (b) Thermal buckling in 

cantilevered beam mode. 
 

The smartness of the CFRP-NiTi composites was verified by detecting thermal buckling effects in the active beam 
specimens. For these tests, the CFRP-NiTi specimens were assembled as observed in Fig. 4(b). Activation of the 



composite (1) is done by electrical resistive heating of all NiTi SMA wires (2) using a programmable DC power supply 
from Agilent, E3633A model. The temperature of the composite surface is measured using a K type micro-
thermocouple with 80 µm in diameter (3) while tip deflection of the beam is accompanied by a LVDT displacement 
sensor from Solartron, DF5.0 model (4), installed at 100 mm from the clamped extremity. The tip deflection and 
temperature of the active beam as well as the electrical resistance of the NiTi SMA wires are stored in a data acquisition 
system from Agilent, 34970A model. 

 
3. RESULTS AND DISCUSSIONS 
 

Transformation of the NiTi wires embedded into CFRP matrix was verified by electrical resistance (R) as a function 
of temperature using a thermocontrolled silicone oil bath (Reis et al, 2006). Figure 5(a) confirms that no transformation 
exist in the CFRP + cold-worked NiTi wire specimen. However, as observed in Fig. 5(b), transformation was detected 
in both, CFRP + annealed NiTi wire and CFRP + trained NiTi wire specimens. The annealed and trained NiTi wires 
present a two-step phase transformation during cooling, from austenite to R-phase and then to martensite (Otsuka & 
Ren, 2005). As expected from De Araújo et al (2001), Fig. 5(b) also shows that the training procedure increases the 
transformation temperatures (Rs, Rf, As e Af). 
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Figure 5. Phase transformation of the NiTi wires. (a) Cold-worked. (b) Annealed and trained. 

 
Figure 6 show some results of the three point bending tests realized as indicated in Fig. 4(a). The characteristic slope 

(k) for each specimen tested at 30 oC and 80 oC are plotted in Figs. 6(a) and 6(b), respectively. These slopes were 
determined using data from the superposition of the ten load – unloading F – y cycles.  
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Figure 6. Thermomechanical behavior of the CFRP-NiTi active composites tested in a three point bending mode. 
Superposition of ten F – y cycles. (a) Test at 30 oC. (b) Test at 80 oC.  

 
A small hysteresis in the cyclic F – y behavior was detected between 2 and 3 mm in the CFRP – NiTi specimens 

tested at 30 oC, as can be observed in Fig. 6(a). This behavior is amplified by the presence of the NiTi SMA wires 
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because it was very limited in the CFRP pure specimen. Figure 6(b) show that for the test temperature of 80 oC, this F – 
y hysteresis is not visualized in the cyclic F – y behavior. However, the k slopes are unaffected by the test temperature 
indicating that transformation of the NiTi wires from R-phase (30 oC) to austenite (80 oC) does not change the stiffness 
of the active composite specimens. Figure 7 show the Young’s modulus (E) of the CFRP-NiTi active composites 
measured at 30 oC after the cyclic F – y tests (Fig. 6). It was verified that the modulus is larger in the specimens 
containing the NiTi wires, however that cannot simply be attributed to the SMA presence because of that volumetric 
fraction is quite small (about 1.4%). That difference is probably associated to the quick differences in the amount of 
epoxy resin added to each specimen during the fabrication. Table 1 summarizes the E values for each CFRP-NiTi 
specimen. 

 

0,00 0,05 0,10 0,15 0,20 0,25 0,30
0

50

100

150

200

250

300

350

 CFRP
 CFRP + cold-worked NiTi
 CFRP + annealed NiTi
 CFRP + trained NiTi

 

 

Fl
ex

ur
e 

st
re

ss
, σ

 (M
P

a)

Flexure strain, ε (%)

 
Figure 7. Mechanical behavior of the CFRP-NiTi specimens during three point bending tests at 30 oC.  

 
 

Table 1. Young’s modulus of the CFRP-NiTi active composites. 
 

Specimen E (GPa) 
CFRP 104.1 

CFRP + cold-worked NiTi 113.9 
CFRP + annealed NiTi 118.9 
CFRP + trained NiTi 114.8 

 
Figure 8 show the response of the CFRP-NiTi composites to a simple triangular current (I) wave from 0 to 1.5 A, 

with a heating – cooling rate of 0.4 A/min. For all composite specimens, superficial temperatures between 85 and 115 
oC are reached. These temperatures are enough to transform the NiTi wires into the CFRP matrix, as indicated in Fig. 
5(b). 
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