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Abstract - In this paper, the linear and  nonlinear aeroelastic response is modeled using bond graph with a unique 

experiment that allows  prescribed plunge and wings pitch motion. In the first case, the equations of the mechanism of 

aerodynamic instability is derived using the bond-graph modeling, the lagrangian approach, the general theory of 

aerodynamic instability and the flutter  mechanism (classical unsteady theory). 

The transfer function of the linear system will be studied in different aeroelastic parameters such as  freestream 

velocity, atmospehere density and airfoil characteristics (geometry). Incorporated with a full-state feedback control 

law, an optimal observer is used to stabilize the system. The simulated models are compatible with results found in 

available literature and control is achieved when system is undergoing limit cycle oscilattions. 
Keywords: bond graph, flutter, aeroelasticity, modeling, control systems 

 

1. NOMENCLATURE 
The nomenclature used in this paper is presented on Table 1. 

 

Table 1. Nomenclature 

A, B    system matrices a nondimensionalized distance from the midchord to the 

elastic axis 

α pitch angle β flap deflection 

b semi-chord of the wing ch structural damping coefficient in plunge due viscous 

damping 

cα   structural damping coefficient in pitch due 

viscous damping  

clα,cmα   lift and pitch moment coefficient per angle of attack 

clβ,cmβ   lift and pitch moment coefficient per 

control surface deflection 

Iα   mass moment of inertia of the wing about the elastic 

axis 

J performance index Kh     structural spring constant in plunge 

Kα     structural spring constant in pitch L,M    aerodynamic force and moment 

m mass P(x)    positive definite symmetric matrix 

ρ air density Q,R    weighting matrices 

Sp    wing span U free stream velocity 

x states of the aeroelastic system sα nondimensionalized distance measured from the elastic 

axis to center of mass 

k bω/U (reduced frequency)   

 

2. INTRODUCTION 
 

Aeroelasticity is the phenomena (O’Neil et al. 1998) resulting from the interaction of structural, inertial and 

aerodynamics forces. The aerodynamic loads on aircraft wing vary with the speed of flow and depend on the structural 

response. 



Usually, the unsteady aerodynamic loads are divided into two parts, lift and drag, when the aerodynamic and 

structural loads are in balance, it will produce a harmonic oscillation. This kind of vibration happens at certain speed of 

flow called the flutter boundary. A literature review (Block et al. 1997) gives several examples of flutter analysis and 

control, as well as nonlinear aeroelastic analysis. 

Theodorsen (1935) was an original investigator of flutter phenomenon. He developed an unsteady aerodynamic model 

that led to the popular Theodorsen´s Function. The functions explain the lag effects of the unsteady aerodynamics at 

different values of reduced frequency, k. Theodorsen and Garrick (1940) used this method to compare theoretical 

predictions of flutter velocity and frequency with experimental results. The method assumes oscillatory motion of the 

wing and provides an excellent means for predicting the flutter velocity and frequency. In “Introduction to the Theory 

of Aeroelasticity” Fung (1955) shows approximated Theodorsen´s function to simulate a wing in unsteady aerodynamic 

flow. With these approximations, the motion equations can be integrated and solved to show a two or three dimensional 

wings response. Conventional methods of examining aeroelastic behavior have relied on a linear approximation of the 

governing equations of the flow field and/or the structure: however, aerospace systems inherently contain structural and 

aerodynamic nonlinearities result from unsteady aerodynamic sources, large strain-displacement conditions, and partial 

loss of structural or control integrity. These systems may exhibit nonlinear dynamic response characteristics such as 

limit cycle oscillations, internal resonances and chaotic motion. 

    Flutter analysis is generally executed by mathematical modeling based on Lagrange equation and completed by 

solving the complex determinant of the equation in frequency domain. In it, the analysis of the problem is modeled and 

analyzed using power bond graph method. In this method, the phenomenon is considered as a dynamic system that 

consists of interacting sub-systems and/or components. All the elements within the system are connected each other by 

energy bonding where the power flows through. The types of the basic elements that construct the system are: the 

storing/dissipating energy components, energy transmitters, and junctions, beside the source of energy as the external 

excitations. 

    The contribution of this paper lies in the use of a bond graph approach to modeling an aeroelastic system (wing 

section) in pitch and plunge motion. In the first case, a nonlinear aeroelastic model is represented as shown by 

Sahjendra and Strganac, the model represents a typical aeroelastic wing section which has been traditionally used for 

the theoretical and experimental study of two dimensional aeroelastic behavior. In the second case, a single trailing edge 

control surface is used for the nonlinear aeroelastic system control. The control system design is based on the state-

dependent Riccati method. This approach has been developed in a series of papers (De Marchi, Singh, Planitis and 

Block, 2005a, 2002b, 2004c, 1997d) and applied to variety of aerospace control problems. 

 

3. BOND-GRAPH OF AN AEROELASTIC SYSTEM 
     

Bond graph modeling is a powerful tool for modeling engineering systems; especially when different physical 

domains are involved. Furthermore, bond graph sub-models can be re-used elegantly (Broenink, 1999), because bond 

graph models are non-causal. Bond graphs are labeled and directed graphs, in which the vertices represent sub models 

and the edges represent an ideal energy connection between power ports. The vertices are idealized descriptions of 

physical phenomena: they are concepts, denoting the relevant aspects of the dynamic behaviour of the systems. It can be 

bond graphs itself, thus allowing hierarquical models, or it can be a set of equations in the variables of the ports (two at 

each port). The edges are called bonds.  

The concept of bond graphs was originated by Paynter (1961). The idea was further developed by Karnopp et al. in 

their textbooks (1968, 1975, 1983, 1990), so that it could be used in practice. Damic et al. in “A Bond Graph Approach 

to Modeling of Spatial Flexible Multibody Systems Based on Co-rotational Formulation”, developed a model to explore 

the application of bond graph techniques to modeling multibody systems consisting of interconnected slender bodies 

that undergo large translational and/or rotational motions. The results of that work are in agreement with those reported 

in literature, demonstrating that bond graph model is capable of capturing nonlinear phenomena that may characterize 

such problems. Pagwiwoko et al. (2001) examined an aeroelastic behavior using bond graph approach; the authors 

consider the flutter phenomena as a dynamic system constructed in the form of power bond graph, converting the bond 

graph model into equivalent block diagram, the analysis of structural response can be carried out directly in time 

domain. 

Bond graphs are a domain-independent graphical description of dynamic behaviour of physical systems. This means 

that systems from different domains are described in the same way. The basis is that bond graphs are based on energy 

and energy exchange. Behaviour with respect to energy is domain independent. It is the same in all engineering 

disciplines, as can be concluded when comparing electrical system with the damped mass spring system. This leads to 

identical bond graphs.  

Two elements in bond graph are connected by a bond, this bond can be interpreted in two different ways, as an 

interaction of energy or as a bilateral signal flow, this is essential in bond graph modeling. Modeling is started by 

indicating the physical structure of the system. The process of determining the computational direction of the bond 

variables is called causal analysis. The result indicated in the graph by so-called causal stroke, indicating the direction 

of the effort, and is called the causality of the bond.  

The nature of the constitutive equations laid demands on the causality of the connected bonds. Bond graphs 

elements are drawn as letter combinations indicating the type of element. The bond graph elements are the following: 

C -  Storage element, capacitor, spring, store all kinds of free energy; 
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I   - Storage element, inductor, mass; 

R -  Resistor dissipating free energy, electric resistor, mechanical friction; 

Se/Sf - Sources, electric mains, gravity, pump, in this case represented by Lift and Moment; 

0/1 - Junctions, for ideal connecting two or more submodels. 

By definition, the power is positive in the direction of the power bond (direction of the half arrow). A port that has 

an incoming bond connected to, consumes power if this power is positive. In other words; the power flows in the 

direction of the half arrow if it is positive and the other way if it is negative. 

To generate a bond graph model starting from an ideal-physical model, a systematic method exist, this method 

consists roughly of the identification of the domains and basic elements, the generation of the connected structure, the 

placement of the elements, and possibly simplifying the graph. 

A causal bond graph contains all information to derive the set of state equations. It is either a set of ordinary first-

order differential equations, when the model is explicit, or a set of differential and algebraic equations, when the model 

is implicit.  

    The aeroelastic wing section used for analysis is shown in figure 1 and the bond graph model of system is shown in 

figure 2. 
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      Figure 1: Aeroelastic Wing Model (O’Neill et al)                   Figure 2: Bond-Graph Model of an Aeroelastic Wing 

 

The equations associated to the model are (O’Neill et al): 
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The nomenclature used in Figure 2 is presented on Table 2. 

 

Table 2. Nomenclature used in Figure 2 

C1 Stiffness Coefficient in Plunge Motion R1 Damping Coefficient in Plunge Motion 

C2 Stiffness Coefficient in Pitch Motion R2 Damping Coefficient in Pitch Motion 

One Junction 1 Plunge Velocity y&  One Junction 2 Pitch Velocity α&  

Constant 1 Free Stream Velocity  Lift Block to Calculate Lift 

Moment Block to Calculate Moment I Inertia Element of  the System 

Mse 1 Modulated Source Element (for Lift) Mse 2 Modulated Source Element (for Moment) 

Test Y yy && /||  Test Alfa αα && /||  

 

In equations (1) mT denotes the total system mass that translates; mw denotes the wing mass that rotates; 

and cgwe ImrI += 2
. Both viscous and Coulomb-type dampings are included according to the viscous damping 

forces, and µα and µy terms are included according to the Coulomb damping forces. Nonlinear stiffness characteristics 

for pitch and plunge motion are represented by the parameters ζ andξ . It is important to note that the unsteady 

aerodynamic loads are dependent upon the motion of the wing, thus, 
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The aerodynamic and pitch moment are modeled by the unsteady aerodynamic theory of Theodore Theodorsen 

(O’Neill et al): 
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In (3) C is Theodorsen´s function that depends on the reduced frequency, k = bω/V. It is noted that equation (3) 

represents incompressible small disturbance unsteady flow. Physical properties of the experiment hardware and 

associated analyses are provided next: 450.0−=a , kgmT 3.10= , kgmw 662.1= , 1064.0=b , ms 6.0= , 

radmNk /)33.11(57.2 2 −+= αα , radmNyk y /)09.01(2860 2 −+= , mr 0287.0= , skgCy /30.7= , 

smKgC /008.0 2−=α , 0125.0=yµ , 0252.0=αµ , 
22 0174.00160.0 mkgmrI we −=+= , 

my 0254.00 = , rad175.00 =α , 000 == y&&α . 

 

The bond-graph model for the system derived from (1-3) is shown in the Fig. 2. The Theodorsen´s function, C(k), 

contained within the description of the unsteady aerodynamic loads, depends on the reduced frequency k, Similar to the 

efforts of O´Neil et al. (1998), the impact of the assumptions contained in quasi-steady and unsteady aerodynamic 

models were considered. For the low reduced frequency motion of the experiments discussed herein (k ≈0.1), a 

quasisteady assumption is proven valid by preliminary experiments and, consequently, C(k) is set unity in this point. 

 

4. THE BOND-GRAPH SIMULATION  
 

The software used for the simulation of the aeroelastic model is the 20-sim, version 3.2, this software permits 

through appropriate symbols to create elements and connections among these to represent the associated physical 

model. The free stream velocity can be chosen the value of “Constant 1”. 

The variables y&  and α&  are used for the feedback of the Lift and Pitch Moment, the system is self-excited. 

Figures 3 and 4 shows the plunge and pitch motion, for simulation using V = 15 m/s, ξ =0.09 and ζ = 80.0. 

Figures 5 and 6 shows the pitch and plunge motion for the same velocity and ξ =0.0 and ζ = 0.0. 
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 Figure 3: Pitch  Motion                                                           Figure 4: Plunge Motion   

           for V = 15.0 m/s, ξ =0.09 and ζ = 80.0.                                   for V = 15.0 m/s, ξ =0.09 and ζ = 80.0.         

 

5. CLOSED-LOOP MODEL SIMULATION 
 

5.1 AEROELASTIC LINEAR MODEL 
 

For the closed-loop model, the aeroelastic wing section is shown in fig. 7. 

The bond graph model using 20-sim it is shown in fig. 8, the definitions of the model are: MSE = Modulated Source 

Element (vector), I – Inertia Matrix Element, R – Damping Matrix Element, C – Stiffness Matrix Element, Constant 1 – 

Velocity Vector },{ α&&h , Constant 2 – β and Constant 3 – “a”. In the first case a simulation performance in open-loop 

model with initial conditions; h0= 0.02m, α0 = 0.2 rad, 0.0=α& and 0.0=h& . 
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       Figure 5: Pitch Motion for V = 15.0 m/s,     Figure 6: Plunge Motion for V = 15.0 m/s, 

      ξ =0.0 and ζ = 0.0.        ξ =0.0 and ζ = 0.0. 
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   Figure 7. Wing Model with Control Surface (Strganac et al)        Figure 8. Bond-Graph Model of System in Figure 7 

 

The governing equations of motion are (Bismarck, 1997): 
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M and L are the aerodynamic lift and pitch moment. It is assumed that quasi-steady aerodynamic force and moment are 

the forms: 
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where “a” is the nondimensionalized distance from the midchord to elastic axis, sp is the wing span, clα and cmα are the 

lift and pitch moment coefficients per angle of attack, and clβ and cmβ are the lift and pitch moment coefficients per 

control surface deflection β. The model has a diagonal damping matrix, however it should be noted that the method is 

applicable to models of larger dimensions, which have nonlinear damping matrices with nonzero off-diagonal elements. 

Defining the state vector x = {h, α, h& ,α& }    ∈∈∈∈    R4, one obtains a state variable representation of (4-5-6) in the form: 

 

{ } β







+








=

0

12

21

2x222 0

M

I0

b
x

M
x

xx
&          (7) 

 



where b0= [b01, b02]
 T

, 0ixj and Iixj denote null and identity matrices of appropriate dimensions. 

M1, M2, M3 and M4 are like in Singh: 
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The systems parameters are: b = 0.135m; Nsc 036.0=α , 358.3=βlc , 358.3=m kg, ms p 6.0= , 

mNkh /4.2844= , 
3/225.1 mkg=ρ , αα lm cac )5.0( += , 

2065.0 kgmI =α , radNmk /82.2=α , 

mNsch /43.27= , 28.6=αlc , 635.0−=βmc  and babbx /)](0873.0[ +−=α . 

 

The result for plunge and pitch motion are shown in fig. 9 and 10 for V = 15.2 m/s and a = -0.6. In fig 11 and 12 

plunge and pitch motion are shown for V = 15.0 m/s and a = -0.4. For the open loop system a persistent periodic 

oscillations (limit cycles) in the pitch and plunge motion exists with velocity of 15.2 m/s,   a = -0.6. 
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            Figure 9: Plunge Motion for     Figure 10 : Pitch Motion for 

            V = 15.2 m/s and a = - 0.6                       V = 15.2 m/s and a = - 0.6   

 

5.2 CLOSED-LOOP SIMULATION 
 

Control can be considered to be a manipulation to achieve or to fulfill a given objective. At this point a control law 

based in Quadratic Criterion Function (Meirovitch, 1998) is designed using Riccati equation method, for the linear 

controllable multivariable system 

0)0(....... xxBuAxx =+=&           (11) 

The controllability matrix for the system (7) is: 

],,,[ 32 BABAABBC =           (12) 
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and has rank 4 for all x∈Ω⊂R
4
. The controllability matrix is function of “U” and “a”. The controllability matrix has 

been computed for several values of “U” and “a”, the matrix C is nonsingular for U ∈ [10, 30] and α∈ [-0.6, 0.0], Fig. 

13 and 14 shows the root locus of characteristic equation of (7) for U = 15.0 m/s and a ]6.0,0.0/[]0.0,6.0[−∈ . The 

performance of the closed loop system depends on the matrix A and the weighting matrices Q and R.  
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               Figure 11:   Pitch Motion for                              Figure 12: Plunge Motion for  

                          V = 15.2 m/s and a = - 0.4       V = 15.2 m/s and a = - 0.4 

 

Substituting the control law (13) in (7) gives the closed loop system 
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Figure 13. Root locus for                                Figure 14. Root locus for  

       V = 15.0 m/s and   a ]6.0,0.0[∈                              V = 15.0 m/s and   a ]0.0,6.0[−∈  

 

The matrix “C” has rank 4, for all ∈Ω⊂R
4
, this implies that the system is completely state controllable. Using the 

parameters “U’, “a”, initial conditions, weighting matrix Q and R, respectively like in Singh (2002), Q = 

Diag(1,10,1,10) and R = 1000, respectively. The Eigenvalues of Ac   are: -3.6859 ± 15.2378 i and -2.9777 ± 8.7803 i. 

Using matrix P to calculate β in (13) and after some matrix manipulation we have the equations of motion as: 
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where c1, c2, c3, c4, k1, k2, k3, k4 are function of PBBR T1−− . 



Figures 15, 16 and 17 shows plunge, pitch and β motion, with velocity of 15.2 m/s and a = -0.4, Q = diag (1,10,1,10) 

and R = 1000, all the results were obtained using bond-graph modeling with 20-sim. 

Figures 18, 19 and 20 shows plunge, pitch and β motion, with velocity of 15.2 m/s and a = -0.6, Q = diag (1,10,1,10) 

and R = 1000, all the results were obtained using bond-graph modeling with 20-sim. 

 

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (s)

P
it
c
h
 M

o
ti
o
n

 (
ra

d
)

 

0 1 2 3 4 5 6 7 8 9 10
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (s)

P
lu

n
g

e
 M

o
ti
o
n

 (
m

)

 
  Figure 15. Closed-loop Response for Pitch             Figure 16. Closed-loop Response for Plunge 

       Motion, V = 15.2 m/s and a = - 0.4                      Motion, V = 15.2 m/s and a = - 0.4 
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    Figure 17. Closed-loop Response for Beta  Figure 18. Closed-loop Response for Pitch 

        Motion, V = 15.2 m/s and a = - 0.4         Motion, V = 15.2 m/s and a = - 0.6 

 

0 1 2 3 4 5 6 7 8 9 10
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time (s)

P
lu

n
g

e
 M

o
ti
o
n

 (
m

)

 

0 1 2 3 4 5 6 7 8 9 10
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (s)

B
e
ta

 M
o
ti

o
n
 (

ra
d

)

 
      Figure 19. Closed-loop Response for Plunge  Figure 20. Closed-loop Response for Beta 

Motion, V = 15.2 m/s and a = - 0.6       Motion, V = 15.2 m/s and a = - 0.6 

 

At last, two experiments were accomplished with speed of 30 m/s and different values for Q, diag(100,10,100,10) 

and diag(100,1000,100,1000). The results are presented in Figures 21, 22, 23, 24, 25 and 26. 
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 Figure 21. Closed-Loop Response for Beta        Figure 22. Closed-Loop Response for Plunge 

     Motion, V = 30 m/s and a = -0.6    Motion, V = 30 m/s and a = -0.6 

 Q = diag(100,10,100,10)          Q = diag(100,10,100,10) 
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         Figure 23. Closed-Loop Response for Pitch      Figure 24. Closed-Loop Response for Beta 

          Motion, V = 30 m/s and a = -0.6                Motion, V = 30 m/s and a = -0.6 

 Q = diag(100,10,100,10)       Q = diag(100,1000,100,1000) 
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      Figure 25. Closed-Loop Response for Pitch          Figure 26. Closed-Loop Response for Plunge 

       Motion, V = 30 m/s and a = -0.6        Motion, V = 30 m/s and a = -0.6 

         Q = diag(100,1000,100,1000)          Q = diag(100,1000,100,1000) 

 

5. CONCLUSIONS 

 
Herein, two aeroelastic dynamic models were considered, the first nonlinear using the theory of Theodorsen to 

express the forces and aerodynamic moments acting in a wing section with two degrees of freedom, plunge and pitch 

motion. In the second model the quasi-steady aerodynamic theory was considered to express the force and aerodynamic 



moment. The two physical models were developed using the bond-graph modeling with 20sim. In the second model a 

single control surface was used for the flutter suppression.  

The bond-graph model shows to be a powerful tool to simulate the aeroelastic system, the results are in good 

agreement with those reported in literature. It is possible to write models as directed graphs where parts are 

interconnected by bonds, along which exchange of energy occurs. The bond-graph modeling was shown quite effective 

for the analysis of the aeroelastic models developed. 

By using the common rules and procedures, the bond-graph modeling diagram can be constructed for a certain 

dynamic system, and the interaction mechanism among the components can be determined, since the dynamic modeling 

is conducted directly in physical problem rather than the mathematical equations. This method is practical to use for 

multi-degree of freedom real wing structure, and due to the fact that simulation is executed directly in time domain, and 

the structural non-linear factors as function of dynamic response can be modeled accurately. 
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