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Abstract. The wind action on realistic structures is investigated in this work using numerical tools from Computational 
Fluid Dynamics (CFD). In recent years, wind tunnel experiments have been carried out by numerical simulation, 
leading to a new research field on CFD: the Computational Wind Engineering (CWE). A wide variety of problems is 
now investigated in the field of CWE, including evaluations of aerodynamic coefficients for estimation of the wind 
action on structures, determination of air flow patterns around and within buildings and simulation of pollutant 
dispersion in urban areas. In this paper, the flow governing equations are the Navier-Stokes equations and the 
continuity equation, considering the pseudo-compressibility hypothesis for incompressible flows. The numerical model 
is obtained using an explicit two-step Taylor Galerkin scheme for the discretization of the flow governing equations in 
the time domain and the Finite Element Method (FEM) for spatial approximations, which are performed using eight-
node hexahedral elements with one-point quadrature. Turbulence flows are analyzed employing Large Eddy 
Simulation with the dynamic model for sub-grid scales. Some practical examples are simulated in order to validate the 
numerical model, including the wind action on a bridge, the airflow patterns around a block of buildings in an urban 
area and the wind circulation around and within a simple building with an opening in the windward wall. 
 
Keywords: Computational Wind Engineering (CWE), Computational Fluid Dynamics (CFD), Finite Element Method 

(FEM), Large Eddy Simulation (LES). 
 
1. INTRODUCTION 
 

Computational Wind Engineering (CWE) (see Murakami, 1997 and Stathopoulos, 1997 for further details) deals 
with numerical simulation of classical wind tunnel experiments for evaluations of aerodynamic/aeroelastic effects 
induced by the wind action on civil structures, such as long-span bridges and buildings. Experimental techniques may 
be replaced now by reliable algorithms that simulate wind flows with high level of accuracy. In addition, the numerical 
approach is more attractive than wind tunnel studies because it is much less expensive in terms of time and financial 
costs. However, wind flows are very difficult to reproduce numerically owing to complex characteristics of the flow 
field. 

The wind action over general structures may be evaluated using aerodynamic or aeroelastic analysis, depending on 
the level of interaction considered between the fluid and structural fields. Aerodynamic analysis is recommended for 
determination of wind loads on immersed bodies that are very rigid, such that the elastic effects of the structure on the 
surrounding flow can be disregarded without losses in the physical representation of the problem. On the other hand, 
aeroelastic analyses are generally used for identification of dynamic instabilities induced by the wind action over 
flexible structures. In this work, the aerodynamic approach is employed in all simulations. 

The aerodynamic analysis is performed numerically using numerical models to solve the Navier-Stokes equations 
over the flow field, considering the immersed body as a rigid structure with non-slip boundary conditions. It is well 
known that the flow field around a 3D bluff body is extremely complicated, since impingement, separation, 
reattachment, circulation and vortex shedding may occur simultaneously. Moreover, the mathematical treatment of 
incompressible flows is subjected to restrictions imposed to the continuity equation by the incompressibility assumption 
(divergence-free condition on the velocity field). Although direct simulation will be possible in a near future for all 
Reynolds numbers, turbulence modeling is still required in order to represent the effects of small scales over the main 
flow. Hence, it is observed that almost all those phenomena which are considered hard to solve in the field of 
Computational Fluid Dynamics (CFD) are included here. 

In the present paper, the flow governing equations are the Navier-Stokes equations and a special form of the mass 
conservation equation, which is obtained using the pseudo-compressibility hypothesis presented by Chorin (1967), 
leading to an explicit treatment for the pressure field. Turbulent flows are analyzed using Large Eddy Simulation (LES) 
with the dynamic model for sub-grid scales (see Smagorinsky, 1963 and Lilly, 1992). The numerical scheme for the 
flow analysis is obtained applying the explicit two-step Taylor-Galerkin method (see Kawahara and Hirano, 1983) to 
the governing equations set. The Finite Element Method (FEM) is employed for spatial discretizations using the eight-
node hexahedrical isoparametric element with one-point quadrature. Typical applications are carried out in order to 
demonstrate the applicability of the present formulation. 



2. THE GOVERNING EQUATIONS FOR WIND FLOWS 

Wind flows are usually characterized by the following properties: 
1) Natural wind streams are considered to be within the incompressible flow range; 
2) Wind is always flowing with a constant temperature (isothermal process); 
3) Gravity forces are neglected in the fluid equilibrium; 
4) Air is considered as a Newtonian fluid. 

Considering the properties presented above and in the absence of structural motion (aerodynamic analysis), the flow 
governing equation are defined in a classical Eulerian kinematical description by the following expressions (see, for 
instance, Schlichting, 1979): 

a) Momentum conserving equations – the Navier-Stokes equations: 
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b) Mass conserving equation for pseudo-compressible flows (see Braun and Awruch, 2005 for further information) – 
the continuity equation: 
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c) Constitutive equation for Newtonian fluids: 
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where vi are components of the velocity vector in the i direction, xj are components of the cartesian coordinates vector in 
the j direction, t indicates the time domain, p is the thermodynamic pressure, ρ is the fluid’s specific mass, c is the 
sound speed in the fluid field and Ωf is the flow’s spatial domain, which is bounded by TfΓ , δij are components of the 
Kroenecker’s delta ( ij ij1  for  ;  0  for  i j i jδ δ= = = ≠ ) and µ and λ are the dynamic and volumetric viscosities of the 
fluid, respectively. 

Neumann and Dirichlet boundary conditions must be specified on TfΓ  to solve the flow problem, which are given 
by the following expressions: 
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where vΓ (boundary with prescribed values iv  for the fluid velocity field), pΓ  (boundary with prescribed values p  for 
the pressure field) and Γσ  (boundary with prescribed values iS  for the fluid boundary tractions) are complementary 
subsets of the boundary TfΓ , such that Tf v p  ΓσΓ = Γ + Γ + . In Eq. (7) nj are components of the unit normal vector n at 
the boundary Γσ . Initial conditions for the pressure and velocity fields must be also specified at t = 0 to start up the 
flow analysis. 

2.1. The turbulence modeling 

Although any viscous incompressible flow can be analyzed with the set of governing equations given above, it is 
observed that only flows with moderate Reynolds numbers can be in fact simulated using direct simulation, considering 
the computational capacity of the modern computers. Turbulent flows are very restrictive because the smaller 
turbulence scales, which are associated to the smaller eddies of the flow field, require computational meshes with very 
fine definition in order to describe the motion of this flow structures correctly. The turbulence problem is usually solved 
employing modified governing equations that reproduce the turbulence effects over the main flow statistically. These 
turbulence effects are represented by means of turbulence models. In this work, LES is used in the turbulence modeling. 

In the LES formulation the governing equations are submitted to a spatial filtering process where the flow field is 
decomposed into large and small scales (or large and small eddies). Large eddies are solved directly with the filtered 
equations, which are described by field variables associated to the large scales, and eddies smaller than the grid 
resolution are modeled using turbulence closure models, which are employed in order to represent the small scales 
effects over the large ones. 

The governing equations may be written after the filtering process as follows: 
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where SGS
ijτ  are components of the Reynolds sub-grid stress tensor (which is associated to unsolved sub-grid terms that 

must be modeled) and overbars indicate large scale variables. The Reynolds sub-grid tensor is usually approximated 
according to the Boussinesq assumption: 

( )SGS
ij i j t ij2v v Sτ ρ µ′ ′= =  (9) 

where commas indicate sub-grid scale variables, µt is the eddy viscosity and ijS  are components of the strain rate tensor, 
which are expressed in terms of large scale variables as follows: 

ji
ij

j i

1
2

vvS
x x

 ∂∂
= +  ∂ ∂ 

 (10) 

The eddy viscosity µt must be obtained using some sub-grid scale model. In the present work, this is made 
employing the dynamic sub-grid scale model. The dynamic model was presented first by Germano et al. (1991) and 
adjusted later by Lilly (1992). 

The eddy viscosity µt is usually expressed in the dynamic model as shown below: 
( ) 2

t ,C x t Sµ ρ= ∆  (11) 

where ( ),C x t  is the dynamic coefficient (with x  and t indicating space and time dependencies), S  is the filtered 

strain rate tensor modulus and ∆  is the characteristic dimension of the grid filter, which is associated to element 
volumes in FEM formulations ( 3ele elevol∆ = ). The dynamic coefficient is updated along the time integration process 
taking into account the instantaneous condition of the flow field. The expression due to Lilly (1992) is employed here as 
follows: 
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where: 
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and: 
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The solution of Eq. (12) demands two filtering processes on the flow governing equations: the first filtering is 
associated to the use of the LES formulation, which is related to grid filter ∆  and large scale variables represented by 
overbars ( • ). The second filtering is referred to a second filter called test filter ∆ , which must be larger than the first 

filter ∆ . Second filtering variables are identified by the symbol •  and they are computed using the expression below: 
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where 
i

k  is the second filtering value at the nodal point i of a generic variable k , which is associated to large scales 

of the first filtering, n is the number of nodal points with direct connectivity to the nodal point i, j
id  is the distance 

between the nodal points i and j and jk  is the first filtering value of a generic variable k computed at the nodal point j. 
The second filter arrangement is illustrated in Fig. 1. 

The characteristic dimension of the second filter at a nodal point i is determined by: 
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where ne is the number of elements in the neighborhood of node i and vol(p) is the volume of the element p. 
The final form of the governing equations with turbulent effects is written as follows: 
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Figure 1. Second filter arrangement. 

 
3. THE NUMERICAL MODEL FOR THE FLOW ANALYSIS 
 

The explicit two-step Taylor-Galerkin scheme is employed in this work for the time discretization of the flow 
governing equations. Additional information about this numerical model may be found in Kawahara and Hirano (1983) 
and Braun and Awruch (2003). The algorithm for the flow simulation may be summarized in the following steps: 
(1) Calculate n 1 2
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(2) Imposition of the boundary conditions (4) and (6) on n 1 2
iv + . 

(3) Calculate n 1 2p +  with: 
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(4) Imposition of the boundary condition (6) on n 1 2p + . 
(5) Calculate the incremental pressure field with: 
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(7) Imposition of the boundary conditions (4) and (6) on n 1 2
iv + . 

(8) Update velocity field with n 1 n n 1 2
i i iv v v+ += + ∆ , where: 
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(9) Imposition of the boundary conditions (4) and (6) on n 1
iv + . 

(10) Update pressure field with n 1 n n 1 2p p p+ += + ∆ , where: 
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(11) Imposition of the boundary condition (6) on n 1p + . 
The final form of the numerical model is obtained applying the Bubnov-Galerkin’s weighted residual scheme into 

the FEM context on the discrete forms of the flow governing equations. Eight-node hexahedral elements are used for 
spatial approximations employing the one-point quadrature technique for the evaluation of element matrices. An 
efficient method for hourglass control in the fluid mesh is adopted according to the model proposed by Christon (1997). 
Further information about FEM applications on fluid dynamics may be found in Reddy and Gartling (1994) and 
Zienkiewicz et al. (2005). 
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4. THE NUMERICAL EVALUATION OF AERODYNAMIC COEFFICIENTS 
 

The use of aerodynamic coefficients is very popular in Wind Engineering analyses and many analytical models to 
describe aerodynamic/aeroelastic phenomena are formulated using this important information. Aerodynamic forces are 
developed over the body surface of structures immersed in a fluid stream. These forces are usually obtained by the 
integration of pressures and shear stresses developed on the fluid-structure interface owing to the flow action. The 
components of the aerodynamic forces in the along-flow and across-flow directions are referred to as drag and lift, 
respectively. 

The aerodynamic coefficients are evaluated in this work using the formulae below: 
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where Xi, Yi and Zi are Cartesian global coordinates of a nodal point i on the fluid-structure interface, Xg, Yg and Zg are 
Cartesian global coordinates of the body gravity center, V∞  is the flow reference speed, NNI is the number of fluid 
nodal points on the body surface and L, W and H are characteristic dimensions related to length, width and height of the 
immersed body. The aerodynamic forces Fx, Fy and Fz at a nodal point i are obtained by numerical integration of Eq. (6) 
over the body surface as follows: 
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where ( )i
SA  is the influence area of a nodal point i at the fluid-structure interface, which may be obtained by some 

smoothing procedure taking into account face areas of elements in the neighborhood of the node i, and ( )i

jn  are 

components of  the unit normal vector n at the same nodal point i. Although nodal values for the pressure field ( )ip  are 
obtained by the flow analysis straightforwardly, viscous stresses are variables given at element level in FEM 
formulations and thus, they must be evaluated at nodal level using smoothing techniques. In this paper the viscous 
stresses at a nodal point i on the body surface are calculated in the following manner: 
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where NFC is the number of elements in the neighborhood of a nodal point A at the fluid-structure interface, kΓ  is the 

face area of the element k and ( )ij k
τ  are shear stress components of the element k, which are evaluated at the finite 

element center according to the reduced integration technique. 

5. NUMERICAL APPLICATIONS 
 
5.1 Aerodynamic analysis of a bridge cross-section 
 

This first numerical application presents the aerodynamic analysis of a bridge cross-section. The bridge is submitted 
to different wind incidences in order to obtain circulation patterns of the wind flow around the bridge deck and the 
aerodynamic coefficients as functions of the angle of attack of the incident wind stream. Figure 2 shows the geometrical 



characteristic of the computational domain, which is constituted by 473000 elements. It is observed that the boundary 
conditions on the external boundaries are given as functions of the angle of attack (α) to reproduce inflow conditions 
with oblique incidence. Physical properties of the wind flow as well as geometrical and numerical constants used in the 
numerical simulations are presented in Tab. 1. All simulations are carried out with a Reynolds number Re = 9x104 (Re 
= ρV0D/µ). 
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Figure 2. Geometrical characteristics of the computational domain used in the bridge analysis. 

 
Table 1. Constants employed in the aerodynamic analysis of a bridge. 

 
Specific mass (ρ) 1.25 Kg/m3 

Dinamic viscosity (µ) 1.25x10-3 Ns/m2 
Volumetric viscosity (λ) 0.0 Ns/m2 

Sound speed (c) 150.0 m/s 
Reference velocity – V0 37.5 m/s 

Characteristic dimension – D (= 0.2B) 2.4 m 
Time step (∆t) 1x10-4 s 

 
Table 2 presents time-average values obtained by the present work in the aerodynamic analysis of the bridge cross-

section proposed above. These values were calculated from time histories that are referred to drag, lift and moment 
resultants collected along the numerical simulation. Results referred to the experimental work performed by Limas 
(2003) in wind tunnel studies are also presented, where a good agreement can be observed between numerical and 
experimental data. The aerodynamic coefficients CD, CL and CM are given as follows: 

D x y

L y x

C ( ) C ( )cos( ) C ( )sen( )

C ( ) C ( )cos( ) C ( )sen( )

α α α α α

α α α α α

= +
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and: 

x y z
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= = =∑ ∑ ∑  (30) 

where Mz is the aerodynamic moment acting around an axis passing through the geometrical center of the cross-section 
and normal to the plane x1-x2. 

 
Table 2. Aerodynamic coefficients obtained in the bridge analysis. 

 
Aerodynamic coefficients References Angle of wind incidence 

CD CL CM 
-8° 0.52 -0.79 0.05 
-4° 0.32 -0.25 0.02 
0° 0.28 0.0 0.0 

+4° 0.31 0.28 -0.02 
Present work 

+8° 0.51 0.80 -0.04 
-8° 0.44 -0.66 0.05 
-4° 0.33 -0.38 0.02 
0° 0.28 -0.04 0.01 

+4° 0.34 0.44 -0.04 
Limas (2003) 

+8° 0.49 0.79 -0.04 
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The flow circulation around the bridge can be analyzed in Fig. 3, where pressure fields and streamlines obtained in 
the numerical simulation for different wind incidences are presented. It is important to notice that figures are related to 
instantaneous fields of the pre-referred variables. Important conclusions can be made in terms of aerodynamic behavior 
of the bridge studied in this paper comparing results presented in Tab. 2 and the flow conditions observed in Fig. 3. It is 
verified that the minimum lift value at α = 0° is related to similar pressure fields developed above and below the bridge 
deck. On the other hand, at α = -8° and α = +8° maximum lift values are obtained because force resultants due to 
pressure distribution on the bridge surface are clearly developed in the x2 direction with the lift sign given according to 
the angle of wind incidence. Drag force is minimum at α = 0° owing to the fact that the frontal wall is the unique area of 
the bridge cross-section with direct exposure to the wind stream. Aerodynamic moments are always observed for 
nonzero incidence angles due to unbalanced pressure distributions generated on the bridge by the wind action. 

     

   
Figure 3. Instantaneous pressure fields and streamlines for the bridge analysis. 

5.2 Wind environment conditions around a block of buildings 

In the present application a typical urban area is selected as a test case for the computation of wind environment 
conditions around buildings immersed in a flow with atmospheric boundary layer characteristics. Information about 
geometrical properties and boundary conditions of the computational domain as well as locations of points of 
measurements of wind speeds are presented in detail in Fig. 4. 
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Figure 4. Geometrical characteristics of the computational domain referred to the block of buildings. 

The computational grid is constituted by 1268272 elements. Fluid properties are presented in Tab. 3 with additional 
constants employed in the numerical analysis. The present simulation is performed with a Reynolds number Re = 105 
(Re = ρV0D/µ). 
 



Table 3. Constants employed in the wind environment analysis of a block of buildings. 
 

Specific mass (ρ) 1.25 Kg/m3 
Dinamic viscosity (µ) 3.17x10-2 Ns/m2 

Volumetric viscosity (λ) 0.0 Ns/m2 
Sound speed (c) 230.0 m/s 

Reference velocity – V0 42.3 m/s 
Characteristic dimension – D (= 0.2B) 60 m 

Time step (∆t) 6x10-4 s 
 

Time-average pressure fields computed by the present work are shown in Fig. 5. It is verified that zones with high 
pressure are developed in the frontal area of the block of buildings for Z = 5 m and Z = 10 m owing to the action of 
horseshoe vortices (see Peterka et al., 1985 for further details) near the ground. Zones with complex flow characteristics 
are also observed between the buildings A and X for Z = 5 m and Z = 10 m, where a recirculating region with high 
suction is generated. It is observed that the building X is submitted to larger pressure zones on the frontal surface as 
well as larger separation areas on the lateral walls due to direct incidence of the wind stream for Z = 25 m and Z = 40 m. 

 

 
Figure 5. Time-average pressure fields referred to the wind environment analysis of a block of buildings. 

 
The time-average wind speed W ( 2 2

1 2 inW Vv v= + ; Vin = inflow wind speed at Z = 2 m) obtained by the present 
work at some points of measurement indicated in Fig. 4 are shown in Tab. 4. The present results are compared to 
experimental and numerical data obtained by Stathopoulos and Baskaran (1996), where a reasonable agreement can be 
observed. 

 
Table 4. Time-average wind speed W at points of measurements. 

 
Time-average wind speed W 

Stathopoulos and Baskaran (1996) Point of measurement Present work 
Numerical Experimental 

1 0.80 0.73 0.98 
2 1.49 0.98 1.32 
3 0.34 0.57 0.23 
4 1.43 1.08 1.28 
5 1.26 0.89 1.02 
6 1.14 0.81 0.67 
7 0.60 0.96 0.76 
8 0.27 0.26 0.05 
9 0.61 0.58 0.44 
10 0.83 0.84 0.64 

 
5.3 Ventilation analysis of a building model with an opening 

 
The present application deals with the computation of airflow conditions around and within a building-like body 

with an opening in windward wall, which is immersed in a wind flow with atmospheric boundary layer characteristics. 
A schematic view of the computational domain with the respective boundary conditions and points of velocity 
measurements may be found in Fig. 6. The computational grid is constituted by 1037660 elements. Fluid properties are 
presented in Tab. 5 with additional constants employed by the numerical algorithm. The present simulation is 
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performed with a Reynolds number Re = 1.4x105, which is calculated using the inflow velocity at Z = 2.5 m (Vref) and 
the building height H = 2.5 m. 
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Figure 6. Schematic view of the computational domain for the ventilation analysis. 
 

Table 5. Constants employed in the ventilation analysis of a building-like model. 
 

Specific mass (ρ) 1.25 Kg/m3 
Dinamic viscosity (µ) 3.17x10-2 Ns/m2 

Volumetric viscosity (λ) 0.0 Ns/m2 
Sound speed (c) 230.0 m/s 

Reference velocity – V0 42.3 m/s 
Characteristic dimension – D (= 0.2B) 60 m 

Time step (∆t) 6x10-4 s 
 

Figure 7 shows time-average velocity profiles in the streamwise direction computed by the present work at the 
points of measurement indicated in Fig. 6. The present results (solid lines) are compared to experimental data (black 
dots) by Jiang et al. (2003), where a good agreement can be verified. Differences between numerical and experimental 
data are related to turbulence fluctuations considered in the wind tunnel analysis.   
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Figure 7. Schematic view of the computational domain for the ventilation analysis. 
 



Instantaneous pressure fields obtained by the present work are shown in Fig. 8. It is observed that high pressure 
fields are developed inside the building model preventing airflow entering and leading to inactive flow motions. On the 
other hand, the outer flow is very similar to airflows observed around cubic models without openings. 

 

Figure 8. Instantaneous pressure fields obtained in the ventilation analysis. 

6. CONCLUSIONS 

A numerical model to simulate Wind Engineering problems was presented in this work. Some typical applications 
were analyzed where results obtained by the present algorithm were compared to experimental data from wind tunnel 
studies. It was verified that the numerical scheme proposed in this paper predicted well the physical phenomena related 
to the examples simulated here. Some improvements may be performed in the present formulation in order to obtain a 
better approach for the physical problem as well as a more efficient code. Suggestions include implementation of a 
numerical model to consider turbulence fluctuations in the inflow boundary conditions and a numerical algorithm for 
adaptative meshes. 
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