
Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

PARAMETERS ESTIMATION  OF SANDWICH BEAM MODEL  WITH 

RIGID POLYURETHANE FOAM CORE 
 

Nilson Barbieri, e-mail: nilson.barbieri@pucpr.br 
Pontifícia Universidade Católica do Paraná – PUCPR – Curitiba - Brasil 

Universidade Tecnológica Federal do Paraná – UTFPR – Curitiba – Brasil 

 

Renato Barbieri, e-mail: renato.barbieri@pucpr.br 
Pontifícia Universidade Católica do Paraná – PUCPR – Curitiba - Brasil 

 

Luiz Carlos Winikes, e-mail: luiz.winikes@ig.com.br 
Universidade Tecnológica Federal do Paraná- UTFPR – Curitiba - Brasil 

 

Abstract. In this work the physical parameters of sandwich beams made with the association of hot-rolled steel, 

Polyurethane rigid foam and High Impact Polystyrene, used for the assembly of household refrigerators and food 

freezers are estimated using measured and numeric frequency response functions (FRFs). The mathematical models 

are obtained using the Finite Element Method (FEM) and the Timoshenko beam theory. The physical parameters are 

estimated using the amplitude correlation coefficient and Genetic Algorithm (GA). The experimental data are obtained 

using the impact hammer and four accelerometers displaced along the sample (cantilevered beam). The parameters 

estimated are the Young modulus and the loss factor of the Polyurethane rigid foam and the High Impact Polystyrene. 
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1. INTRODUCTION  
 

The proved efficiency of sandwich beams and its current usage in a growing rate demands a higher level of 

acknowledgment of the mechanical properties, even when the structure is submitted to dynamic loads. For household 

refrigerators and food freezers, one of the main complaints to the customer care centers is related to noise generation, 

that is related most of the times with vibration of the cabinet that produces sound irradiation from internal components 

like shelves and containers, leaking to the outside of the unit.  

The efficient numerical models are necessary to simulate (estimate) the dynamical behavior of such systems. When 

the complex sandwich beams are used the physical parameters are difficult to be estimated. 

Sandwich structures are extensively used in engineering because of their high specific stiffness and strength. The 

modeling of sandwich structures has been studied extensively, but less attention has been paid to their material 

identification (Shi et al., 2006). The work proposes an inverse method for the material identification of sandwich beams 

by measured flexural resonance frequencies.  

Caracciolo et al. (2004) presented an experimental technique for completely characterizing a viscoelastic material, 

by determining the Poisson ratio and the complex dynamic Young’s modulus of a small beam-like specimen subject to 

seismic excitation, together with the theoretical background. The same experimental device is used basically for both 

kinds of tests: the specimen is instrumented, placed into a temperature controlled chamber and excited by means of an 

electrodynamic shaker. The longitudinal and the transversal deformations are measured by strain gauges to get the 

Poisson ratio, whereas the vertical displacement of the specimen and the acceleration of the support are measured to get 

Young’s modulus of the tested material. The experimental curves of the Poisson ratio and of Young’s modulus, 

obtained at different temperatures, are then gathered into a unique master curve by using the reduced variables method. 

The two master curves, respectively, represent the Poisson ratio and Young’s modulus for the tested material in a very 

broad frequency range. 

Park (2005) used experimental methods to measure frequency-dependent dynamic properties of complex structures. 

Flexural wave propagations are analyzed using the Timoshenko beam, the classical beam, and the shear beam theories. 

Wave speeds, bending and shear stiffnesses of the structures are measured through the transfer function method 

requiring small number of vibration measurements. Sensitivity analysis to investigate the effects of experimental 

variables on the measured properties and to study optimal sensor locations of the vibration measurements is performed. 

Using the developed methods, the complex bending and shear stiffnesses of sandwich beams of different core materials 

and a polymer beam are measured. Continuous variations of the measured bending and shear stiffnesses and their loss 

factors with frequency were obtained. To further illustrate the measurements of frequency-dependent variation of 

dynamic properties of complex structures, the damping of structural vibration using porous and granular materials is 

investigated.  

Kim and Kreider (2006) studied the parameter identification in nonlinear elastic and viscoelastic plates by solving 

an inverse problem numerically. The material properties of the plate, which appear in the constitutive relations, are 

recovered by optimizing an objective function constructed from reference strain data. The resulting inverse algorithm 

consists of an optimization algorithm coupled with a corresponding direct algorithm that computes the strain fields 



given a set of material properties. Numerical results are presented for a variety of constitutive models; they indicate that 

the methodology works well even with noisy data. 

Pintelon et al. (2004) analyzed the stress–strain relationship of linear viscoelastic materials characterized by a 

complex-valued, frequency-dependent elastic modulus (Young’s modulus). Using system identification techniques it is 

shown the elastic modulus can be measured accurately in a broad frequency band from forced flexural (transverse) and 

longitudinal vibration experiments on a beam under free–free boundary conditions. The approach is illustrated on brass, 

copper, plexiglass and PVC beams. 

Yang et al. (2005) analyzed the vibration and dynamic stability of a traveling sandwich beam using the finite 

element method. The damping layer is assumed to be linear viscoelastic and almost incompressible. The extensional 

and shear moduli of the viscoelastic material are characterized by complex quantities. Complex-eigenvalue problems 

are solved by the state-space method, and the natural frequencies and modal loss factors of the composite beam are 

extracted. The effects of stiffness and thickness ratio of the viscoelastic and constrained layers on natural frequencies 

and modal loss factors are reported. Tension fluctuations are the dominant source of excitation in a traveling sandwich 

material, and the regions of dynamic instability are determined by modified Bolotin’s method. Numerical results show 

that the constrained damping layer stabilizes the traveling sandwich beam. 

Singh et al. (2003) formulated a system identification procedure for estimation of parameters associated with a 

dynamic model of a single-degree-of-freedom foam-mass system. Ohkami and Swoboda (1999) presented two 

parameter identification procedures for linear viscoelastic materials. Chang (2006) uses the genetic algorithm for 

parameters estimation of nonlinear systems. 

Backström and Nilsson (2007) indicate the need for simple methods describing the dynamics of these complex 

structures. By implementing frequency-dependent parameters, the vibration of sandwich composite beams can be 

approximated using simple fourth-order beam theory. A higher-order sandwich beam model is utilized in order to obtain 

estimates of the frequency-dependent bending stiffness and shear modulus of the equivalent Bernoulli–Euler and 

Timoshenko models. The resulting predicted eigenfrequencies and transfer accellerance functions are compared to the 

data obtained from the higher-order model and from measurements. It can be noticed that for lower order wavenumber 

the ordinary Timoshenko theory and the higher order theory show satisfactory agreement.  

In this work the physical parameters of sandwich beams made with the association of hot-rolled steel, Polyurethane 

rigid foam and High Impact Polystyrene, used for the assembly of household refrigerators and food freezers are 

estimated using measured and numeric frequency response functions (FRFs). The mathematical models are obtained 

using the Finite Element Method (FEM) and the Timoshenko beam theory. The physical parameters are estimated using 

the amplitude correlation coefficient (Grafe, 1998) and Genetic Algorithm (GA) (Chang, 2006). The experimental data 

are obtained using the impact hammer and four accelerometers displaced along the sample (cantilevered beam). The 

parameters estimated are the Young modulus and the loss factor of the Polyurethane rigid foam and the High Impact 

Polystyrene. To estimate the initial values of the parameters, separated tests were conduced using cantilevered beams of 

Polyurethane rigid foam and High Impact Polystyrene. 

 

2. MATHEMATICAL MODEL 
 

A lot of research has been done on Finite Element Models of cantilever beams based on Euler Bernoulli beam 

theory. In Euler Bernoulli beam theory the assumption made is, plane cross section before bending remains plane and 

normal to the neutral axis after bending. This assumption is valid if length to thickness ratio is large and for small 

deflection of beam. However if length to thickness ratio is small, plane deflection before bending will not remain 

normal to the neutral axis after bending. In practical situations a large number of modes of vibrations contribute to the 

structure’s performance. Euler Bernoulli beam theory gives inaccurate results for higher modes of vibration. 

Timoshenko beam theory corrects the simplifying assumptions made in Euler Bernoulli beam theory. In this theory 

cross sections remain plane and rotate about the same neutral axis as the Euler Bernoulli model, but do not remain 

normal to the deformed longitudinal axis. The deviation from normality is produced by a transverse shear that is 

assumed to be constant over the cross section. Thus, the Timoshenko beam model is superior to the Euler Bernoulli 

model in precisely predicting the beam response (Backström and Nilsson, 2007) for lower number of vibration modes. 
The equation of motion for the vibration of a beam according to the Timoshenko beam theory (Zenkert, 1995) is: 
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where: )t,x(w  is the transverse displacement of the beam from an equilibrium state; D  is bending stiffness ; ∗ρ  is the 

mass per unity of surface; S is the shear stiffness ; ℜ is the rotational inertia; x   is the coordinate along  the beam axis; 

t  is the time ; f(x) is the amplitude of the external force applied along the beam span; ω is the excitation frequency and 

1i −= . 

 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

 

 

 

(a)           (b) 

 

Figure 1-a) Sandwich beam geometric parameters, b) finite element d.o.f. 

 

The dimensions and parameters of sandwich beam showed in Fig. 1a are: 1E = Young Modulus; ρ1 = density and 1t  

= thickness (steel); 2E = Young Modulus; ρ2 = density and 2t  = thickness (High Impact Polystyrene); cE = Young 

Modulus, cG = shear Modulus; ρc = density and ct  = thickness (Polyurethane rigid foam); e  = position of the neutral 

line; d = distance between centerline of the steel and High Impact Polystyrene beam; z  and *z  positions of the 

reference axis. According Fig. 1a and detailed theory of sandwich beam (Zenkert, 1995):  
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Making )t,x(ww =  an harmonic function, it is possible to admit that: 

 
tie)x(W)t,x(w ω=            (8) 

 

Replacing Equation (8) into (1) we obtain: 
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The exact solution W(x) needs to satisfy (9) at every point x and in general is unknown. We seek instead an 

approximate solution )x(W
~

. This approximate solution is interpolated over a finite element, Fig.1b, with 2 nodes 

according to the formula: 
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where [φ(x)] is the shape function matrix (1x4) and the four φj(x) are the well known Hermitian interpolation functions 

(Cook et al., 1989) for C
1
 continuity. The vector {q} is the generalized displacement vector, {q}={w1, θ1, w2, θ2}

t
 where 

wi denote the nodal  displacement and θi is its first derivatives at element node i. 

Replacing the approximate solution into (9) it introduces an residual error, ),x( ωε , which is minimized using the 

Galerkin weighted residual method. In mathematical terms, the residual error is made orthogonal to the weight 

functions:  
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where L is the element length. 

 

After integrations can be obtained the standard finite element equation: 
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The matrices and [K], [M] and [Kσ] are (Cook et al, 1989): 
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2.1. Numerical estimation methods 

 

To approximate the experimental and numeric FRF data, the predictor-corrector updating technique (Grafe,1998) 

based in two correlation coefficients (shape and amplitude) and their sensitivities can be used.  In this work, only the 

amplitude correlation coefficient is used. This coefficient is defined as:   

     

{ } { }

{ } { }( ){ } { }( ))(H)(H)(H)(H

)(H)(H2
)(

kA
T

kAkX
T

kX

kA
T

kX

ka
ωωωω

ωω
=ωχ        (18) 

 

 where )(H kX ω and )(H kA ω are the measured and predicted response vectors at matching excitation/response 

locations. 

 The corresponding sensitivity is: 
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It is therefore proposed to make use of )( ka ωχ  and its sensitivity in a combined manner to improve the overall level 

of correlation. Based on a truncated Taylor series expansion, one can write therefore one equation for frequency point 

kω : 
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where ϕN  is the number of updating parameters and equation (20) is recognized to be in the standard form of 

sensitivity-based model updating formulations: 

 

{ } [ ]{ }ϕ∆=ε S             (21) 

 

An extended weighted least-square approach is proposed which minimizes: 
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where [ ]fW  and [ ]ϕW   are diagonal weighting matrices for the frequency points and updating parameters respectively. 

Another update method uses Genetic Algorithm (GA). This method is vastly used and it is based in evolutionary 

biological process (Chang, 2006) and the GA´s parameters used in this application are: mutation rate=0,02; population 

size=50 and number of generations = 5000. The objective function is defined by:  
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where  FRFexp is the FRF experimental obtained with laser transducer or accelerometer; FRFFEM is the numeric FRF 

estimated using GA or amplitude correlation coefficient; np is the number of points (normally np = 1600). The data 

were collected using frequency range varying from 0 to 400 Hz and the frequency increment ∆ω = 0,25 Hz. 

FRF numeric is obtained using frequency sweeping in the range of interest with the same increment of the 

measurements. The final finite elements system of equations is solved for each frequency and the unitary external force 

applied in the node of the excitation. Adopting this procedure, the FRF’s numeric values correspond to the acceleration 

of the nodes of fixation of accelerometers because the amplitude of force is unitary. 

 



3. RESULTS 

To validate the mathematical model was considered the three layered cantilever sandwich beam model and the 

results are compared with Helgesson (2003), Mead and Markus (1969), Ahmed (1972) , Sakiyama et al. (1996). The 

beam specific properties such as width, height, modulus of elasticity, etc. are chosen to be the same as the former 

investigators in order to be able to compare the results. 

The specific dimensions and material properties of the sandwich beam are: 

Length of beam L= 0.7112 m ; Modulus of elasticity E = 6.89×10
10

 N/m
2
 ; Core shear modulus G =82.68×10

6
 N/m

2
; 

Thickness of faces h1 = h3 =0.45720 mm ; Thickness of core h2 = 12.7 mm ; Core density ρ2 = 32.8 kg/m
3
 ; Face density 

ρ1 = ρ3 = 2680 kg/m
3
 ; Width of beam = 1 m. 

The out come of the program and analysis are natural modes and frequencies. The numerical results of the natural 

mode frequencies or eigen-frequencies are presented and compared with earlier investigators in Table 1. 

 

Table 1. Natural frequency (Hz) and comparison with earlier authors. 

 

Mode Present Helgesson Mead Ahmed Sakiyama 

1 33.75 33.75 34.24 32.79 33.15 

2 198.81 198.77 201.85 193.50 195.96 

3 511.45 511.27 520.85 499 503.43 

4 905.34 904.87 925.40 886 893.28 

5 1346.58 1345.60 1381.30 1320 1328.50 

6 1811.94 1810.30 1867 1779 1790.70 

7 2288.17 2285.80 2374 2249 2260.20 

8 2767.82 2764.70 2905 2723 2738.90 

9 3247.08 3243.30 - - 3212.80 

 
 

The resulting natural frequencies in Tab. 1 compare quite well with the results obtained by earlier investigators, 

principally with Helgesson. Worth noting is that the obtained frequencies are always below Mead and always above 

Ahmed and Sakiyama. The fact that frequencies of Mead are always above the results from this work is due to the fact 

that Mead simplifies the harmonic forces by using complex damped modes. Ahmed has not considered axial forces and 

the theory presented is therefore softer then the present hence is the frequencies below the present. Sakiyama has derive 

the governing differential equations by using the Green function and complex shear module G = G0 (1 + iη) (Helgesson, 

2003) where η is the loss factor. Figure 2 shows the convergence rate for the first vibration mode. The fast convergence 

is obtained using the mathematical model with 300 finite elements. Higher modes in Table 1 presented the same 

convergence behavior. 
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Figure 2 – Convergence rate  
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The experimental sample of sandwich beam made with the association of hot-rolled steel, Polyurethane rigid foam 

and High Impact Polystyrene is shown in Fig. 3. The thickness of the steel is 0.6 mm; the Polyurethane is 38.25 mm and 

the Polystyrene is 1.25 mm and the beam width is 39.18 mm.  

 
Figure 3 – Sandwich beam. 

 

 The experimental data are obtained using the impact hammer and four accelerometers displaced along the sample 

(A1, A2, A3 and A4). The Rational Fraction Polynomial (RFP) (Maia and Silva, 1997) method was used to estimate the 

damping ratio (ξ) and the natural frequencies (ω) of the three mode shapes. Table 2 shows the values of these 

parameters to the four accelerometers. 
 

Table 2 – Experimental damping ratio and natural frequencies. 

 

Accelerometers 

A1 A2 A3 A4 

 

Mode 

shape ω 
[Hz] 

ξ ω 
[Hz] 

ξ ω 
[Hz] 

ξ ω 
[Hz] 

ξ 

1 25.42 0.050 25.39 0.050 25.33 0.052 25.32 0.053 

2 109.41 0.0171 109.45 0.0165 - - 109.39 0.0167 

3 223.97 0.0154 224.00 0.0152 224.05 0.0159 224.18 0.0157 

 

The position of the accelerometer A3 is near to the nodal point of the second mode shape. This justifies the results 

suppressed in Table 2. 

According to the results shown in Table 2, it tried estimate some physical parameters of the system: Young modulus 

and the loss factor of the Polyurethane rigid foam and the High Impact Polystyrene. 

The loss factor η was estimated considering the complex Young modulus )j1(EE* η+= . 

To obtain initial values of these parameters separated studies were conduced to the Polyurethane rigid foam and 

High Impact Polystyrene.  The first approximation to the loss factor was 05.0≅ξ=η . 

 



 

 

Figure 4 – Experimental specimen of cantilever beam with position sensor 

 

 

Figure 4 shows the experimental specimen for the isolated High Impact Polystyrene and Polyurethane rigid foam 

cantilever beam. The High Impact Polystyrene beam dimensions and material property are: length L = 0.145m; width = 

0.02 m; thickness = 0.0018 m; density ρ = 1040 kg/m
3
. The mini shaker was used to the beam random excitation with 

the frequency range varying from 0 to 400 Hz. One accelerometer (PCB model 353B18) and one laser velocity 

transducer (B&K model 3544) were used to collect the vibration data. The accelerometer was placed in the base 

excitation point (shaker) and the laser sensor to the position d=0.135 m. Figure 5 shows the experimental and estimated 

curves of the acceleration ratio (non-dimensional parameter) Paa (acceleration of laser sensor / acceleration of the 

accelerometer). The parameters were estimated using the Genetic Algorithm and the objective function as being the 

difference between the values of the experimental and numeric Paa. The parameter updated is the Young modulus of the 

High Impact Polystyrene and the loss factor. The optimal values found for these parameters are E = 1.425 GPa e η = 

0.045. 
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Figure 5 – Acceleration ratio curves of High Impact Polystyrene cantilever beam. 

 

The Polyurethane rigid foam cantilever beam dimensions and material property are: length L = 0.225m; width = 

0.03 m; thickness = 0.03 m; density ρ = 29 kg/m
3
. The laser sensor position is d=0.1125 m. Figure 6 shows the 

experimental e estimated curves of the acceleration ratio (non-dimensional parameter) Paa (acceleration laser sensor / 

acceleration of the accelerometer). The parameter updated is the Young modulus of the Polyurethane rigid foam and the 

loss factor. The optimal values found for these parameters are E = 8.394 MPa e η = 0.045. 
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Figure 6 – Acceleration ratio curves of Polyurethane rigid foam cantilever beam 

 

Figures 5 and 6 show good agreement between the estimated and experimental curves, principally near to the 

resonances. 

The physical parameters of the cantilever beam shown in Fig. 3 were estimated using the amplitude correlation 

coefficient (ACC) and Genetic Algorithm (GA). The frequency range varying from 0 to 250 Hz was choosing due to the 

good relation signal/noise. Figure 7 shows the experimental and numeric (estimated) FRF curves for the sandwich beam 

(Fig. 3). The curves obtained using ACC and GA are practically superposed. 
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Figure 7 – Experimental and estimated FRF curves. 

The optimal parameter values found with the two numeric methods are shown in Table 3. 

Table 3 – Optimal parameters 

 High Impact Polystyrene Polyurethane rigid foam 

 E (GPa) η E (MPa) η 

GA 1.5830 0.0446 9.5159 0.0645 

ACC 1.5800 0.0471 9.5284 0.0635 



4. CONCLUSIONS 

 
Two methods, Genetic Algorithm and amplitude correlation coefficient, were used to update the values of physical 

parameters of mathematical models of sandwich beam made with the association of hot-rolled steel, Polyurethane rigid 

foam and High Impact Polystyrene, used for the assembly of household refrigerators and food freezers. 

The physical parameters estimated were: the Young modulus and the loss factor of the Polyurethane rigid foam and 

the High Impact Polystyrene.  

Both methods, Genetic Algorithm and Amplitude Correlation Coefficient, presented good results when it is 

compared the estimated and experimental FRF curves.  

Genetic Algorithm method does not use derivatives, thus is a good estimated method even for resonance region. 

Amplitude Correlation Coefficient method use derivatives, even so it was possible to obtain good estimation of the 

parameters. 

The conventional Timoshenko beam theory was applied to model the sandwich beam and the numeric response 

presented good results when compared with results of literature and experimental data (only three vibration modes). At 

the moment other theories are being studied and implemented for evaluation of the effect of compression of the rigid 

foam core which is much softer than the other two layers.  
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