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Functional behaviour of scaling velocities for turbulent separating flows
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Abstract. The present work investigates the asymptotic structure of the turbulent boundary layer near a separation point.
Using some very detailed numerical flow simulations with turbulent low Reynolds number models of the eddy viscosity
and Reynolds stress types, a proposed functional relation for the prediction of the relevant velocity scales is tested. The
numerical simulations are thoroughly validated through experimental data obtained with the help of a LDV system. In
addition, the singular behaviour of the near separation solution is compared with the theory of other authors.
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1. Introduction

Near to a separation point, in a flow with a prescribed adverse pressure gradient, the asymptotic structure of the tur-
bulent boundary layer is known to exhibit characteristics that are completely strange to its classical two-layered diagram.
A point of major relevance is the total extinction of the logarithmic velocity profile, which must be replaced by a square
root law. As expected, this change in the functional representation of the velocity profile is provoked by physical effects
that also lead to a change in the representative scaling parameters of the problem.

The flow behaviour just described thus establishes important guidelines to which any rational theory should conform.
Far away from the separation point, a classical structure based on asymptotically distinguished regions determined by
Prandtl’s law of the wall and by Coles’ law of the wake must be obtained. In this case, the wall shear stress plays an
important role in the definition of the local scaling parameters. Near to the separation point, however, the local scaling
parameters are known to depend on the local pressure gradient so that the flow structure must be dominated by a Stratford
type of solution

The purpose of this work is to show how a systematic application of Kaplun limits to the Reynolds averaged Navier-
Stokes equations naturally uncovers the asymptotic structure of separating turbulent flows, explaining in simple terms
how the two above asymptotic structures can be reconciled into a single theoretical framework. Cruz and Silva Freire
(1998, 2002) have shown that appropriate limit processes can be used to split the flow domain into regions of “principal
limits” and regions of “intermediate limits”, yielding correct asymptotic structures that are valid far away as well as close
to a separation point. Principal limits are crucial in high-Re theory for they can be shown to be uniform in overlapping
intervals. Tn addition, associated equations obtained through passage of principal limit processes are expected to be
satisfied by the corresponding limits of the exact solution. This underlying notion was introduced by Kaplun (1967)
with the express purpose of relating the domain of validity of solutions with the formal domain of validity of equations.
In fact, the basis for Kaplun’s arguments is an unprovable principle. However, in his theory some formal properties of
differential equations can be precisely defined to make plausible a discussion on such sophisticated concepts as limit
processes, formal validity of equations, principal equations, intermediate equations, asymptotic expansions, domain of
validity of such expansions, overlap and matching. The use of heuristic arguments is not peculiar in perturbation methods.
The implication is that results must often be subjected to a posteriori verification.

The present work will, in particular, show how all results of Cruz and Silva Freire (1998, 2002) can be given justifica-
tion through the experiments of Loureiro et al. (2007) for the flow over a steep hill. Because laboratory measurements are
necessarily confined to a sparse set of measuring stations, data interpolation may lead to a spurious behaviour of the flow
properties. To overcome this difficulty, numerical simulations of the flow under interest were carried out using the SST-
model (Shear Stress Transport) (Menter, 1994). The sets of results furnished by the numerical simulations and validated
by the experiments were then used to validate the theoretical results.

The theory of Kaplun cannot in principle explain the changes in scaling parameters; hence, it must be supplemented
by a relation that can explain in physical terms the correct limiting behaviour of the flow relevant scales. Thus, a new
algebraic equation needs to be advanced to specify the relevant scales of the flow. Here, we follow the procedure of Cruz
and Silva Freire (1998, 2002) and specify two algebraic equations to describe the velocity and the length reference scales.
These equations use some order of magnitude arguments to establish a balance between pressure and internal friction
forces in the inner regions of the flow. Solutions of these equations are then used to determine the local reference scales.
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2. Preamble: Relevant Scales for Separating Flows

Some remarks concerning the changes in scaling laws will now be made.

The two-layered model established by Prandtl (1925) and v. Kdrman (1930) considers that across the wall layer the
total shear stress deviates just slightly from the wall shear stress. Therefore, in the turbulence dominated flow region we
may write

Oy = Oy(—pu'v’) = 0. €))

A simple integration of the above equation gives ord(u') = ord(v') = ord(u, ), where we have clearly considered the
velocity fluctuations to be of the same order and w, = /7, /p.

The analysis may proceed by taking as a closure assumption the mixing-length theory. Further equation integration
yields the classical law of the wall for a smooth surface

wt=a"lnyt+ A, ut=ufu, oyt =y/v/u.), @)

with =04, A =5.0.

The essential description of the physics of a turbulent flow near to a separation point has been given by Stratford
(1959). In an earlier work, Goldstein (1948) tackled the separation phenomenon for a laminar flow.

The action of an arbitrary pressure rise in the inner layer distorts the velocity profile implying that the gradient of shear
stress must now be balanced by the pressure gradient. Therefore, Eq. (1) has to be specialized to

Oyt = Oyp. 3)
Two successive integrations of Eq. (3) together with the mixing length hypothesis and the fact that at a separation
point 7, = 0, give

ut = (2 %_1)y+1/2 “

)

with

ut =wfug, oyt =y W), = ((0/p)0p). )

Thus, at a separation point, ord(u’) = ord(v') = ord(uy, ).

The relevant velocities and length scales for flows away and close to a separation point are then (u,, v/u,) and (uy,,
v [uy,) respectively.

The noticeable result is that both relevant velocity scales — u, and u,,, — are contained in

—u'v’ — (p™ 1) — (p7'0ep) y = 0. (©)

In the limiting cases 7, >> (y/p)(0yp) and 1, << (y/p)(9p), the scaling velocity tends to u, and ((V/p)@zp)1/3

respectively, where (9, p) is to be considered at the wall.

To propose a characteristic velocity that is valid for the whole domain, Cruz and Silva Freire (1998, 2002) suggested
to reduce Eq. (6) to an algebraic equation by considering ord(u') = ord(v') = ord(ug) and ord(y) = ord(v/ug). Thus,
the reference velocity, ug, is to be determined from the highest real root of Eq. (7):

up = (P ) ur — (p7')0ep = 0, (7
that s,

ug = \?’/i(Tw/p)A;;—{—(i% V2) 7 Aug, (8)
with

s _\1/3
Aun = (32 (/) (0ep)u) + V=227 (7] ) + 3 (W[ ) @ep)u?) - ©)
Note that in the very near wall region, where the viscous effects are dominant, the local governing equation is
VOyu = p~Lo,p. (10)

Two successive integrations of Eq. (10) and the fact that 7, = 0, give
2
ut = (1/2)y™", (1D
the solution of Goldstein (1948).
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3. The Method of Kaplun, Limits of Equations, Principal limits

Let us consider the problem of an incompressible turbulent flow over a smooth surface in a prescribed pressure dis-
tribution. The time-averaged equations of motion — the continuity equation and the Reynolds equation — can be cast
as

&-ui = O, (12)
Uj 8jui = —8,']7 — 628]' (u}ué) + R_182u@‘, (13)

where the notation is classical. Thus, in a two-dimensional flow, (x1,22) = (z,y) stands for a Cartesian co-ordinate
system, (u,us) = (u,v) for the velocities, p for pressure and R (= u.l/v) for the Reynolds number. The dashes are used
to indicate a fluctuating quantity. In the fluctuation term, an overbar is used to indicate a time-average.

All mean variables are referred to the free-stream mean velocity, u., and to the characteristic length [ = (pu? / (8:p)w )(w
= wall condition). The velocity fluctuations, on the other hand, are referred to the characteristic velocity ug defined by
Eq. (7) so that € = ug/ue..

The purpose of perturbation methods is to find approximate solutions to Eqgs. (12) and (13) that are valid when one or
more of the variables or parameters in the problem are small or large. Provided the small parameters are taken to be € and
R~ the classical results of perturbation theory can be used.

The present account on perturbation methods is based on the results of Kaplun (1967), Lagerstrom and Casten (1972)
and Lagerstrom (1988). In the following, we use the topology on the collection of order classes as introduced by Meyer
(1967). For positive, continuous functions of a single variable ¢ defined on (0, 1], let ord 77 denote the class of equivalence
introduced in Meyer (1967).

The essential idea of the single limit process n-limit is to study the limit as e — 0 not for fixed x near a singularity
point x4, but for x tending to x4 in a definite relationship to € specified by a function 7(¢). Taking without any loss of
generality z4 = 0, we define

zy =xz/n(€), G(zyp€) = F(z3€), (14)

with 77(€) a function defined in = (= space of all positive continuous functions on (0,1]).

Definition (Kaplun limit)(Meyer, 1967). If the function G(z,;+0) = lim G(z,;¢€), € — 0, exists uniformly on
{zn/|zy| > 0}; then we define lim,, F(x;€) = G(z,; +0).

Thus, if 5 — 0 as € — 0, then, in the limit process, z — 0 also with the same rate of 7, so that /5 tends to a non-zero
limit value.

The investigate the asymptotic structure of the turbulent boundary layer we consider

u(x,y) = ui(z,y) + eus(z,y), v(z,y) = nui(z,y), p(z,y) = p1(2,9), (15)

and the following transformation

9=yp=y/ne), lz,y,)=uilz,y)., (16)

with 7j(e) defined on =.

Upon substitution of Egs. (15) and (16) into Egs.(12) to (13) and depending on the order class of 1 we then find the
following formal limits:
continuity equation:

ord(; (2, yy)) = ord(nii(z, y,))- (17)

T-momentum equation:

ordn =ordl: Ty Ozl + D1 Oy, Gl + OzPp1 =0 (18)
orde? < ordn < ord1 : Gy Oyliy + 01 0y, Gy + 0ppr =0 (19)
orde? =ordn : U1 Oyliy + 01 Oy, Ty + 021 = —3%@ 00)
ord (1/€*R) < ordn < ord ¢? = ordn : By, uiv] =0 Q2D
ord (1/é*R) = ordn : —0y,ujv +0; iy =0 (22)

ordn < ord (1/€*R) : 85 @y = 0. (23)
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y-momentum equation:
ordnp =ord1: U 0,01 + 01 0y, 01 + 0y, p1 =0 24)

ordn < ordl: 0y, D1 = 0. (25)

The set of Egs. (17) to (25) induces to every order of i a correspondence, [im,, — associated equation, on that subset
of = for which the associated equation exists.

Definition. The formal local domain of an associated equation F is the set of orders 7 such that the 5-limit process
applied to the original equation yields E.

Given any two associated equations E; and Es, Kaplun defines

R(mn; €) =FE (%73 €) — E2($n§ €), (26)

where € denotes a small parameter.
Definition (of equivalence in the limit) (Kaplun, 1967). Two equations E{ and FEs are said to be equivalent in the
limit for a given limit-process, [imy, and to a given order, & (e), if

R(z,;€)/d(e) = 0, as € = 0, x, fixed. o7

The following definitions are now possible.

Definition (of formal domain of validity). The formal domain of validity to order § of an equation E of formal local
domain D is the set D, = D U D!s, where Ds are the formal local domains of all equations £ such that £ and E are
equivalent in D/ to order é.

Definition (of principal equation). An equation £ of formal local domain D, is said to be principal to order ¢ if:

i) one can find another equation E’, of formal local domain D', such that F and E' are equivalent in D' to order §;
ii) E is not equivalent to order § to any other equation in D.

An equation which is not principal is said to be intermediate.

The intermediate equation, Eq. (23), together with the boundary condition 4, (,0) = 0, imply that the near wall
solution is 41 (x, y,) = Y. This solution has to be contained by the principal solution furnished by Eq. (22). The outer
flow equations, on the other hand, imply that & (x,yy,) = ue(z,y). Thus, we appear to be faced by a dilemma for the
inner solution is unbounded in the limit y,, — oo and hence no matching can be achieved with the bounded outer solution.
In fact, the matching process that involves the inner and outer solutions is to be performed in a region dominated by Eq.
(21). As it turns out, Eq. (21) yields a solution with a limiting logarithmic behaviour that bridges an inner solution of
order ¢ to the outer solution of order unity through the relationship € = ord(Iln™" R). This problem has been investigated by
many authors (see, e.g., [zakson (1937), Millikan (1939), Yajnik (1970), Tennekes (1973), Afzal (1976)) and is sometimes
called a ‘generation gap’ (Mellor, 1972). An important additional implication is the deduction of an algebraic relationship
that can be used for the prediction of the local skin-friction.

Since the leading order solution in the inner regions of the flow is ord(e), it follows that (1 /€2 R) has to be replaced by
(1/eR) in Egs. (21) to (23) so that the inner region principal equation is given by

ord (1/eR) = ordn : —8y,ujv] + 87 4y = 0. (28)

Therefore, the principal equations to the turbulent boundary layer problem are Eqgs. (20), (28) and (24). The relevant
scales €2 and 1/eR coincide with the scales proposed by Sychev and Sychev (1987) for the description of their two internal
layers.

To relate the formal properties of equations described above to the actual problem of determining the uniform domain
of validity of solutions, Kaplun(1967) advanced two assertions, the Axiom of Existence and the Ansatz about domains of
validity. These assertions constitute primitive and unverifiable assumptions of perturbation theory.

Axiom (of existence) (Kaplun, 1967). If equations ¥ and E' are equivalent in the limit to the order § for a certain
region, then given a solution S of FE which lies in the region of equivalence of E and E’, there exists a solution S’ of E'
such thatas e — 0,5 — S’|/d — 0, in the region of equivalence of E and E'.

To the axiom of existence there corresponds an Ansatz; namely that there exists a solution S of E which lies in the
region of equivalence of E and E’. More explicitly, we write.

Ansatz (about domains of validity) (Kaplun, 1967). An equation with a given formal domain of validity D has a
solution whose actual domain of validity corresponds to D.

The overlap domain of Egs. (20) and (28) can now be determined through R(z,; €) by taking d(e) = ¢*. Then upon
substituting £, by Eq. (20), E5 by Eq. (28) and passing the limit as € tends to zero, one finds

Dovertap = {ord(e'T*R)™! < ordn < ord(e***)}. (29)
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The two principal equations then provide approximate solutions that are accurate to order(e®m==) where
Omae = —(1/2) ((In R/ 1ne) + 3) . 30)

As the flow approaches a separation point, however, we have already seen that the structure depicted by Egs. (17) and
(25) breaks down. To account for the flow behaviour, we must consider Kaplun limits in x-direction.
Let us define

i':xA :;L’/A(E), g:yﬁ :y/n(e)v ﬂi(l'A,yn) :ui(x,y), (31)

with A(e) and n(e) defined on E.

The idea is to approach the separation point by taking simultaneously the - and A-limits at a fixed rate { = A/yp = ord
(1). Note that under this condition, Eq. (6) (or even Eq. (7)) implies that ord (¢?) = ord (1/eR).

The resulting flow structure is given by
continuity equation:

ord(v;(z,yy)) = ord(:(x, yy,))- (32)

T-momentum equation:

ordA =ord1: U1 695Aﬂ1 + 01 8%”&1 -{—695A]51 =0 (33)
orde? <ordA <ord1: @y 8patn 46 8y a1 + Oppfpr =0 (34)
orde? =ord Az @y Byatiy + 01 By, Gy + DyaPr = —Oppu’ — By, ulv] G35)

+ 8, i1 + 0 i
ordA <orde’: 87,01 +8; 4 =0. (36)

y-momentum equation:

ordA =ordl: @ 0y,%1 + 910y, 01 + 0y, p1 =0 37)

orde? <ordA <ordl: @y 8,,01 4 01 8y,01 + 0y, p1 =0 (38)

orde? =ordA: Q19,01 + D1 0y, 01 + By, P1 = By, ulv] — Oy ui” 39)
+ 87,01+, D

ordA <orde?: 97,61 +0; 61 =0. (40)

The principal equations are Egs. (35) and (39). They show that near to a separation point the two principal equations,
Egs. (20) and (28), merge giving rise to a new structure dominated basically by two regions: a wake region (ord(n),
ord(A)> €?) and a viscous region (ord(r), ord(A) < €2). The system of Egs (33) to (40) indicates that the pressure
gradient effects become leading order effects for orders higher than ord(e?) = ord(A). Thus, at about ord(z) = ord(A) =
ord(e?), that is ord((v/u,, ) /1) = ord((u,, /u.)?), we should have ord(u,) = ord(uy,,).

4. Near Wall Solution

The proposition of a near wall solution that is valid for regions of attached flow as well as regions of separated flow can
now be advanced provided Egs. (3) is taken as the basis for our discussion, that is, we consider the dominant equations
in region (eR)~! << n << ¢ and A — 0. In fact, two straight integrations of Eq. (3) together with the mixing-length
hypothesis lead to

ut =02t ui2 + u;,L,,3L2Ly+ + qu_'%_l In (y+) , “n

where ut = u/ug, uf = u-/ur, u3, = up, Jug, y* =y/L.and L} = Leug/v and 0 = 7,/ || is used to indicate the
flow direction.

Many other different treatments of the lower boundary condition can be appreciated in literature. Loureiro et al.
(2007b), for example, have investigated the numerical prediction of flows over two-dimensional, smooth, steep hills
according to the above formulation and the formulations of Mellor (1966) and of Nakayama and Koyama (1984). The
standard x-e model was then used to close the averaged Navier-Stokes equations. The results are shown to vary greatly.
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Table 1. Properties of undisturbed profile (x/H = -12.5) and of hill.

Boundary layer thickness & 100 mm
External velocity Uy 0.0482ms™!
Friction velocity Ur 0.0028 ms~!
Roughness length Z0 0.27 mm
Longitudinal velocity uw?/u;  2.50
fluctuations at (z/6=0.05)

Transversal velocity Vw?/u, 0.83

fluctuations at (z/6=0.08)

Hill height H 60 mm
Hill length L 600 mm
Maximum slope Omaz 18.6°

5. Results: Experimental and Numerical Validation

The structure of a separating turbulent boundary layer, as described above, will be tested against the data of Loureiro
et al. (2007a). This work gives an account of the problem of a separating flow which furnish reasonably detailed near wall
measurements. In particular, reliable wall shear stress measurements are highly coveted for they permit all hypotheses
concerning the relevant scales of a separating flow to be tested. The data of Loureiro et al. (2007a) in particular furnish
wall shear stress data even in the region of reverse flow. Details of the experimental conditions can be obtained from
the original sources. The general flow conditions, however, are presented in Table 1. Here, we just mention that the
experiments of Loureiro et al. (2007a) were conducted in a water channel. Loureiro et al. (2007a) used laser anemometers
for velocity measurements.

The experimental data of Loureiro et al. (2007a) must be supplemented by data obtained through numerical simula-
tions of the same flow geometries. The reason here is to obtain data that for one reason or another have not been reported
by the original work but that are crucial for theory evaluation. A critical example is the pressure distribution at the wall,
which has not been given by Loureiro et al (2007a). A secondary objective of the numerical simulations is to have data
with a sufficiently fine domain discretization so as to allow for accurate data interpolation.

The simulations for both flow geometries were conducted with the code ANSYS CFX, release 5.7. The code solves
the Reynolds averaged Navier-Stokes equations (RANS) through a finite-volume formulation coupled with a scheme for
the treatment of the convective and diffusive terms simultaneously. Turbulence closure was achieved by choosing the (k-
w)-SST formulation of Menter (1994). In fact, six different types of turbulence modeling were applied to the hill problem
(Loureiro et al., 2007c¢). For the prediction of mean velocity profiles and wall shear stress, the S5T-model proved to be
the best choice.

The x-w based SST model is supposed to give highly accurate predictions of the onset and the extent of separation
from a smooth surface under an adverse pressure gradient. Standard formulations based on the x-¢ or x-w models do not
account properly for the transport of the turbulent shear stress. This results in an over prediction of the eddy viscosity.
Menter (1994) proposed to rectify this problem by imposing a limiter to the eddy viscosity. The limiter contains a blending
function whose arguments depend on k, w, S = (local strain rate), v, y and some constants.

The near wall treatment is provided by a method that automatically shifts from a wall function approach to a low-R
formulation as mesh size is refined. By resorting to the analytical solutions of the x-w formulation in the logarithmic and
viscous regions of the flow, a blending procedure can be implemented to specify an algebraic equation for w that can be
used throughout the inner regions of the flow. This equation is then solved together with the fluxes for the momentum and
k (which is artificially kept to zero) equations. Wall functions are replaced by a low Reynolds number formulation once a
near wall grid resolution of at least y= < 2 is achieved.

The coordinate systems used for the computations were the same as defined by the experiments. They are shown in
Fig. 1. Typical numerical simulation details were: 1) computational domains: 22.5x4 H (=hill height); 2) mesh sizes:
110,376 elements; 3) running time: 1h 06 min. Boundary conditions were taken directly from the experimental data,
including the mean and fluctuating quantities. The computations were performed on a Pentium 4, 3.0 GHz, with 1 Gb
DDR400 RAM operating in dual channel mode.

The computed general flow patterns for both flow geometries are shown in Fig. 2. A detailed comparison between the
measured and the computed regions of separated flow is given in Table 2.

The pressure and shear stress profiles at the wall are presented in Fig. 3. These two figures are crucial for an evaluation
of the characteristic flow velocities u,, 4y, and up.

The behaviour of the characteristic velocities 4, uy, and ug is shown in Fig. 4. A negative value of u,, indicates
this parameter has been evaluated in a region of favorable pressure gradient; a negative u. indicates a region of adverse
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Figure 1. Co-ordinate systems and measuring stations.
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Figure 2. Flow streamlines. a: experiments; b: computations.

Table 2. Length of separated flow according to predictions. H = hill height.

Work Sep. Point (z/H) Reatt. Point (z/H) Length (z/H)
Experiments 0.50 6.67 6.17

Numerical Simulation 0.53 5.53 5.00
002 T T 00 71T 1T T T T T TT7
E — ———— U, dUydx ] | o _
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Figure 3. Wall pressure and wall shear stress.
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Figure 4. Characteristic behaviour of u,, u,,,, ug and the merging between the inner and outer regions (¢? and 1/eR).
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Figure 5. The local solutions of Goldstein (1948) and Stratford (1959).

pressure. The points ahead separation and behind re-attachment respectively where v, and u,, assume a same value can
be noted. Clearly, this defines the order of the magnitude of the flow regions where the pressure gradient effects have to be
considered. The numerical computations furnish u, = u,, = 0.00225 ms~!. Since u, = 0.0482 ms™*, then €2 = 0.00218.
This value can be compared with the reference length ((v/u,, ) /1) = (0.00048/0.36250) = 0.0016. Thus, we have cause to
say that the near separation sub-layer structure is governed by a scale of ord(e?), just as stated by Egs. (35) and (39).

Fig. 4 also illustrates the merging between the inner viscous region and the external inertial region. The points where
the two curves cross are defined by the separation and reattachment locations. Thus, at the separation point the two former
distinct layers are governed by the same scales; the flow is then observed to change from a two-layered structure to a one
layered structure.

At the separation point, local solutions based on Goldstein’s (1948) and Stratford’s (1959) approximations should
hold. Fig. (5) shows the velocity profile with u, = 0 plotted in (yT)? and (y*)'/? coordinates. The existence of local
solutions that comply with the theories of Goldstein and Stratford is evident. The fit for the Goldstein solution (u+ =
0.22 (y*)?) was determined with 28 points located in the region 1.62 < y* < 10.49. The coefficient of determination
R-squared was 0.993305. Stratford’ solution (ut = 7.11 (yT)'/?) was determined with 9 points located in the region
11.56 < y* < 14.44. The coefficient of determination R-squared was 0.999986.

The law of the wall formulation of Eq. (41) is compared to the numerical data in Fig. 6. The good agreement with the
experimental data confirms ug and L. as the most appropriate scales for the problem of separating boundary layers.

6. Final remarks

The present work has shown how a straightforward application of Kaplun limits to the problem of a separating bound-
ary layer is capable of explaining in simple terms how the two-layered structure for the canonical turbulent boundary
layer reduces to a single-layered structure near to a separation point. The work has shown how the characteristic veloci-
ties behave in the different regions of the flow, yielding local solutions that corroborate the results implied by the analysis
of Kaplun limits. The present analysis is different from those of other authors in the sense that the small parameter € is
governed by an algebraic equation obtained through asymptotic arguments specially devised to accommodate the various
predominant physical effects.
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Figure 6. Law of the wall in terms of the new inner scales.
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