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Abstract. Aeronautical structures are submitted to a variety of aeroelastic phenomena that may compromise its per-
formance. With the development of new materials, aeronautical structures have becoming lighter, flexible, and they have
being more subjected to aeroelastic problems, such as flutter and buffeting. Researchers have been worked on alternatives
to solve these undesired aeroelastic problems, as the recent concept of smart or intelligent structures. Smart structures
are those that present embedded sensors and actuators in thestructure, integrated with control systems and signal pro-
cessing, to enable the adaptation of the structural system to changes in the operational conditions. Mathematical models
that incorporate actuator elements or sensors are of great importance in preliminary analysis of smart aeronautical struc-
tures. In this context, modeling methods are necessary to capture structural dynamic behavior and unsteady aerodynamic
loading. The objective of this work is the study of an active fuzzy controller for aeroelastic response of a smart wing with
embedded piezoelectric actuators. Linear characteristics of aeroelastic responses will be analised for critical flutter con-
ditions. The finite elements method for the linear structural model and vortex-lattice method for the unsteady aerodynamic
model has been used.
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1. INTRODUCTION

Aeronautical structures are subjected to many sources of excitations, mainly due to aerodynamic flow interactions,
that lead to disturbances and vibrations. With the current requirements for lighter aircraft and the development of new
materials, aeronautical structures are becoming more flexible, and being more subject to aeroelastic problems, such as
flutter, buffeting and limit cycle oscillations. Other sources can affect the aeroelastic system, like strain displacement or
geometric non-linearities, dry friction, shock wave motions, and separated flows (Dowell and Tang, 2002). Another class
of aircraft, like high altitude long endurance, specifically unmanned aerial vehicles (UAV’s) (Cesnick and Brown, 2002;
Patil et al., 2001), and vehicles with morphing wings (Forster and Livne, 2000; Gern et al., 2001), have been studied to
enhance flight performance and less surface controls. Theseaircraft need specific control strategies mainly because of
non-linear effects (aerodynamics and structural dynamics) and complex actuation system.

In this context, developments on numerical solutions for aeroelastic models to be used for aircraft design purpose
have become very important and have received special attention from the scientific community. The numerical models for
aeroelastic analysis can be divided in two vast categories,which are: ones in the frequency domain and in the time domain.
The frequency domain based solutions are the classical ones, but are valid only in the stability boundary, i.e., they can
only be employed for predicting critical aeroelastic conditions. The time domain based solutions allow the determination
of the aeroelastic response time history for any flight condition, and they have the additional advantage of allowing the
inclusion of non-linear effects and the design of control systems for vibration suppression.

A great amount of research has been done to solve aeroelasticcontrol problems, with application of active and passive
solutions to the structure. Recently, expressive developments on the use of active materials incorporated into the structures
have been done. Piezoelectric materials have been the most used ones for sensors and actuators devices, as well as optic
fibers, shape memory alloys, and electro- and magneto-rheological fluids and gels. With the purpose of modifying the
form or position, integrating active elements into the structures together with a control system, signal processing, and
electronic systems, the concept of Smart Structure or Intelligent Structure (IS) has been defined (Crawley, 1994). An
important aspect in the development of IS is the control system. Due to increasingly systems complexity, the non-
conventional control techniques have been explored in the design of non-linear controllers and/or in the operation of
complex environments with uncertainties and ambiguous parameters. Non-conventional techniques are those that do not
follow the classic and modern control techniques approach.Here they comprise the artificial neural networks (ANN)
(Haykin, 1999) and fuzzy logic (FL) (Yager and Filev, 1994).

This work presents an active aeroelastic control strategy for vibration suppression of a flexible smart wing based on
fuzzy logic. The finite element method (FEM) has been used to model the wing structure, which has been assumed
with embedded piezoelectric actuators (Marques and Nagamine, 2001). The vortex-lattice method (VLM) has been used
for the unsteady aerodynamic model (Benini et al, 2001). Both structural and aerodynamic models have been treated
separately and the information exchange between the aerodynamic and structural meshes has been done by a surface
spline interpolation scheme (Benini, 2002). The control methodology has been based on Mamdani-type FL control, to
aim vibration suppression on the wing tip, following the procedure by Gruppioni (2002) and Nagamine (2001). The FL
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controller has been emulated by an ANN, which interpolates the decision surface on pre-determined universe of discourse.
The following sections present structural and aerodynamicmodels, the FL controller design methodology, and the results
achieved for a hypothetical wing model.

2. MATHEMATICAL MODELING

This section will treat the mathematical modeling of a smartflexible with the structural model approached by finite
element method, considering the Kirchhoff plate element assumptions.

2.1 Smart wing description

The flexible wing here can be approached by a cantilever beam,therefore the aerodynamic model treats the wing as
plain plate. The dimensions of the wing are0.8 × 0.25m of semi-span and chord, respectively, wich are the length and
width of the main structure. The piezoelectric actuators then are bonded along the semi-span, as shown in Fig. 1, always
at pairs (in top and under of the main structure).

Figure 1. Schematic of the flexible smart wing structure.

2.2 Modal transformation

The wing structural response is assumed to be linear and without internal damping. The equation of motion for the
structure is shown in Eq. (1), whereM andK are the mass and stiffness matrices, and{x(t)}, {ẍ(t)} and{L({x}, {ẍ}, t)}
are the vectors, representing the displacements, accelerations and external mechanical, electric and aerodynamic loadings.

[M ]{ẍ(t)} + [K]{x(t)} = {L({x}, {ẍ}, t)} (1)

The mode shapes can be arranged in a matrix according to

[Φ] = [ {ϕ1} {ϕ2} {ϕ3} · · · {ϕN} ] (2)

that is named modal matrix and is used as a coordinate transformation matrix, that is:

{x(t)} = [Φ]{η(t)} =
N

∑

r=1

ψrηr (t) (3)

where{η(t)} represents the structural displacements in a modal domain and can be interpreted as a vector of coefficients
which determines the influence of each mode shape in the physical structural response (Meirovitch, 1986).

Since the vector{η} is constant with time, it follows that:

{ẍ(t)} = [Φ]{η̈(t)} (4)

Substituting Eqs. (3) and (4) in Eq. (1) and pre-multiplyingboth sides by[Φ]T ,

[Mm]{η̈(t)} + [Km]{η(t)} = [Φ]T {L({x}, {ẍ}, t)]} (5)

where[Mm] = [Φ]T [M ][Φ] and[Km] = [Φ]T [K][Φ] are named modal mass and modal stiffness matrices, respectively.
Due to the orthogonality properties of the mode shapes, one can prove that the matrices[Mm] and[Km] are diagonal

matrices. In addition, it is possible to normalize the eingenvectors in a form that[Mm] = [I], and then the division of
both sides of Eq. (5) by the matrix[Mm],

{η̈(t)} + [ω2]{η(t)} = [Φ]T {L({x}, {ẍ}, t)} (6)

where[ω2] is a diagonal matrix containing the squared natural frequencies.
In order to simplify the solution of Eq. (6), it is useful to consider only a few natural modes to describe the structural

response. This is done by truncating the summation in Eq. (3). In fact, only a few modes are necessary to obtain a solution
with good precision (Meirovitch, 1986).
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2.3 Model of the active structure

From the principle of Hamilton electro-mechanical variational principle can be assessed. The FEM has been used
to model an active plate, representative for the wing structure. Piezoelectric behavior has been also incorporated to the
model.

2.3.1 Electro-mechanical behavior

From Hamilton’s principle, it follows:

δ

∫ t2

t1

(T − U)dt+

∫ t2

t1

δWncdt = 0 (7)

whereT is the total kinetic energy of the system,U the potential energy of deformation of the system andδWnc the
virtual work of the non-conservative forces acting in the system, between time intervalt1 to t2.

The kinetic energyT of a plate, is given by (Meirovitch, 1986):

T =
1

2

∫

ρ{q̇}T {q̇}dV (8)

whereV is the volume of the plate,ρ the mass density and{q̇} the generalized velocity vector.
For piezoelectric materials the electro-mechanical constitutive equations are coupled (Preumont, 1997), given by:







{σ} = [CE ]{ε} − [e]{E}
{D} = [e]T {ε} + [ξε]{E}
[e] = [d][CE ]

(9)

where{σ} is the stress vector,[CE ] the stiffness matrix,{ε} the mechanical strain vector,[e] the piezoelectric coefficient
matrix,{E} the electric field vector,{D} the electric charge density vector,[ξε] the dielectric constant at constant strain
and[d] the piezoelectric constant matrix.

The system total potential energy comes from the constitutive equations and includes the mechanical and electric
potential energies (Marques and Nagamine, 2001), that is:

U =
1

2

∫

[{ε}T{σ} − {E}T{D}]dV (10)

The total work of the applied external forces is given by:

W = {q}{Pc} +

∫

V

{q}{Pb}dV +

∫

S1

{q}{FS}dS1 −

∫

S1

{φ}QdS2 (11)

where{Pc} is the concentrated force vector,{Pb} the body force vector over the volumeV , {PS} the surface force vector
applied to the areaS1, {q} the generalized displacement vector,{φ} the electric potential vector andQ the electric charge
over the surfaceS2.

Substituting Eqs. (8), (10) and (11) into equation Eq. (7), yields the variational equation, which is used to obtain the
FE model, that is:

∫

V
[ρδ{q̇}T {q̇} − δ{ε}T [CE ]{ε} + δ{ε}T [e]{E} − δ{E}T [ξε]{E} + δ{q}T {Pb}]dV

+
∫

S1

δ{q}T{FS}dS1 + δ{q}T {Pc} −
∫

S1

{φ}QdS2 = 0
(12)

2.3.2 Active plate via finite element method

The linear model in finite elements of the structure considering plate element was based on the Kirchhoff’s hypothesis
and the electromechanical variacional principle for piezoelectric behavior (Lima, 1999). On the field of tensions, this
model uses the rectangular element of Melosh, with three mechanical degrees of freedom per node, being displacements
u, v andw at axiesx, y andx, and an electric degree of freedomφ that depends on amount applied potential in the
element. Fig. 2 illustrates this element with piezoelectric bonded in the two faces of the main structure (plate), wherea, b
andθ respectively represent the length, width and rotation of the faces, andh andhpe are the thicknesses of the plate and
and the piezoelectric ones.

Being the displacement on the neutral plan of the plate, where distance between to the neutral axis isz, as it shows in
the Fig. 3, the nodal displacements are given by the following kinematic relations:



















u = −z
∂w

∂x

v = −z
∂w

∂y
w = w(x, y)

(13)
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Figure 2. DOF of plate finite element with piezoelec-
tric effect. Figure 3. Plate displacement on the neutral axis.

For this element it is necessary to use a function from polynomial interpolation with 12 parameters, that is:

w|xi,yi
= d1 + d2x+ d3y + d4x

2 + d5xy + d6y
2 + d7x

3 + d8x
2y + d9xy

2 + d10y
3 + d11dx

3y + d12xy
3 (14)

Writing w in the matrix form, it goes:

w = {P}T {d} (15)

According to Eq. (13) and Eq. (14), in the matrix forms, the generalized coordinate vector can be writen as:

{q} = [X ]{d} (16)

where[X ] is:

[X ] =

4
∑

i=1











P (xi, yi)
∂P (xi, yi)

∂xi

−
∂P (xi, yi)

∂yi











(17)

Be [Qv] according to (Zienkiewicz and Taylor, 2000):

[Qv] =

[

∂P

∂x

∂P

∂y
P

]T

(18)

Inverting the transformation matrix[X ] and substituting in Eq. (16) it results in the following matrix:

[Bv] = [Qv][X ]−1 (19)

where Eq. (13) can be represented in the following matrix form:

{q} = [Z][Bv]{qk} (20)

with:

[Z] =





−z 0 0
0 −z 0
0 0 1



 (21)

According to Fig. 2, the coordinatesx andy, for nodesi = 1...4, are: (x1, y1) = (−a,−b), (x2, y2) = (a,−b),
(x3, y3) = (a, b) and(x4, y4) = (−a, b).

The nodal displacement relations for the plate element are given by:


























εx =
∂u

∂x
= −z

∂2w

∂x2

εy =
∂v

∂y
= −z

∂2w

∂y2

Υxy =
∂u

∂y
+
∂v

∂x
= −2z

∂2w

∂x∂y

(22)
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By Eqs. (22) and (15) it follows:

[Qk] =

[

∂2P

∂x2

∂2P

∂y2
2
∂2P

∂x∂y

]T

(23)

that substituing in the Eq. (16) results on the matrix:

[Bk] = [Qk][X ]−1 (24)

Being, thus, the Eq. (22) can be represented in the followingmatrix form:

{ε} = −z[Bk]{q} (25)

Potential energy

From Eq. (12), the potential energy of the main structural element (Vst domain, that is, integration defined over the
intervalsx = [−a; a], y = [−b; b] andz = [−h/2;h/2]), is obtained by:

δUst =

∫

Vst

δ{ε}T{σ}dV =

∫

Vst

δ{ε}T [CE
st]{ε}dV (26)

where[CE
st] is the element constitutive equations given on matrix form by:

[CE
st] =

Esthst

1 − µ2
st







1 µst 0
µst 1 0

0 0
1 − µst

2






(27)

whereEst is the Young’s modulus andµst is the coefficient of Poisson of the main structure.
Substituing Eq. (24) in Eq. (26), it follows:

δUst = {δq}T

∫

Vst

[Bk]T [Z]T [CE
st][Bk]dV {δq} (28)

where the stiffness strutural matrix can be represented by:

[kqqst
] =

∫

Vst

[Bk]T [Z]T [CE
st][Bk]dV (29)

The elasticity piezoelectric modulusEpe, the coefficient of Poissonµpe and the constitutive equation of the piezoelec-
tric element, then, in the same way that it was made to get the stiffness matrix of the main structure, the piezoelectric
stiffness matrix is:

[kqqpe
] =

∫

Vpe

[Bk]T [Z]T [CE
pe][Bk]dV (30)

where the integration domain of the volumeVpe defined over the volumes of the piezoelectric elements, thatis, the
intervalsx = [−a; a], y = [−b; b] andz = [−hpe − h/2;−h/2] for piezoelectric below the main structure andz =
[h/2;h/2 + hpe] for the piezoelectric one above.

The electro-mechanical stiffness matrices are given by:

[kqφ] =

∫

Vpe

[Bk]T [Z]T [e][Bφ]dV (31)

[kφq] = [kqφ]T (32)

where:

[Bφ] =







1

hpe

0

0
1

hpe






(33)

The dielectric rigidity matrix is given by:

[kφφ] =

∫

Vpe

[Bφ]T [ξε][Bφ]dV (34)
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Kinetic energy

To calculate the term of kinetic energy of Eq. (8), considersEq. (20), resulting in the following expression:

δT =

∫

V

ρV {q̇}T [Bv]T [Z]T [Z][Bv]{q̇}dV (35)

where the mass matrix on volumeV enclosing the mainVst and the piezoelectricVpe volumes, is obtained as:

[m] =

∫

V

ρV [Bv]
T [Z]T [Z][Bv]dV (36)

Virtual work of the forces and external loads

In accordance with the term of the virtual work done by the forces and external loads of the Eq. (12), and considering
Eq. (20), the virtual work of the external forces vector{fs} is:

δW = δ{q}T

∫

A

[Bv]T {fs}dA (37)

where:

{Fs} =

∫

A

[Bv]
T {fs}dA (38)

Global system equations

Substituting the kinetic energy equations, potential of deformation and work of the external forces in the electrome-
chanical variational principle equation and considering the equilibrium for finite elements, one can yield the global dy-
namic equations of the system:

[Mqq]{q̈} + [Kqq]{q} = {Fs} − [Kqφa]{φ} (39)

where [Mqq], [Kqq], [Kqφa] are the mass, stiffness and electro-mechanical matrices, and {Fs} and {φ} are external
mechanical and electric loading vectors.

3. VORTEX LATTICE METHOD

The VLM consists of distributing plane vortex singularities over a lifting surface and its wake (Katz and Plotkin,
1991). The plane vortex singularities satisfy the Laplace equation and when it is combined with the uniform stream
incompressible and potential flows around the wing the aerodynamic loading can be calculated. Here, to implement
the VLM, the wing has been represented by a lifting surface without thickness and discretized in quadrilateral elements
(panels). A vortex ring is associated with each panel, beingthe leading segment of each vortex ring placed on the panel
quarter chord line and its control point placed at the centerof the three-quarter chord line. The wing discretization scheme
is shown in Fig. 4. To guarantee that the flow streamlines passover the lifting surface, it is necessary to satisfy the
boundary condition of zero normal velocity on the wing surface. This boundary condition is applied at the control points
and it results in the correct values for the vortex singularities (circulationΓ).

Figure 4. Wing discretization scheme (Katz and Plotkin, 1991).

The boundary condition in each panel can be expressed as

(∇φ+ vm + vw) · {n} = 0 (40)
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where the gradient of the potential velocityφ corresponds to the perturbed velocities induced by the wingvortex singu-
larities,vm corresponds to the velocity of the wing motion (the freestream velocity relative to the wing plus the velocities
of the wing structural deformations),vw corresponds to the velocities induced by the wake, andn is the normal vector.

The velocityV induced by each straight vortex segment, extending from point 1 to point 2, at an arbitrary pointP ,
obeys the Biot-Savart law, that is:

V =
Γ

4π

r1 × r2
|r1 × r2|2

(r1 − r2) ·

(

r1
|r1|

−
r2
|r2|

)

(41)

where,r1 andr2 are the vectors that define the position of pointP in relation to the points 1 and 2.
It is important to note that the value of the circulationΓ is still not known in Eq. (41). So, only the values of the

other terms will be calculated. This is done by assumingΓ = 1. The velocity induced by each vortex ring at a pointP is
obtained adding the results obtained with Eq. (41) for the four corresponding vortex segments. The velocity is referredas
the velocity induced by the vortex ringL on the control pointK. Applying the zero normal velocity boundary condition
at the control pointK = 1,

(V11Γ1 + V12Γ2 + V13Γ3 + . . .+ V1mΓm + vm1 + vw1) · n1 = 0 (42)

where the circulations in each vortex ring are the unknowns andm is the number of panels used in the wing aerodynamic
discretization.

Based on Eq. (42), the so-called influence coefficients(aKL = VKL · nk) can be defined. Re-writing this equation
as a function of the influence coefficients for each of them control points and passingvm andvw to the right-hand side
(RHS) of the equation, the following linear system is obtained:











a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm





























Γ1

Γ2

...
Γm



















= −



















vm1 + vw1

vm2 + vw2

...
vmm + vwm



















·



















n1

n2

...
nm



















(43)

The evaluation ofvm consists of two steps: 1) the freestream velocity is obtained moving the wing in the aft direction,
and 2) the velocities of the structural deformations are obtained solving the equation of motion (Eq. (6)). The velocities
induced by the wake (vw vector) are obtained employing the Biot-Savart law (Eq. (41)). It is important to consider that a
portion of the wake is generated at each time interval, according to Fig. 5. The circulation values of the last vortex rings
generated are the same as those of the trailing edge vortex rings, to satisfy the three-dimensional Kutta condition. Thus,
at each time interval new vortex rings are generated and the corresponding values of circulation are found. The value of
circulation of each wake vortex ring remains the same duringall the simulation time. In the present simulation, the wake
rollup has not been considered, so the wake is parallel to thefreestream velocity plane.

Figure 5. Wake discretization scheme (Katz and Plotkin, 1991).

The solution of the linear system given by Eq. (43) provides the circulation values for the wing vortex rings, which
has been employed for the aerodynamic loads calculation. The unsteady Bernoulli equation for each panel is:

pl − pu

ρ
=
V 2

u

2
−
V 2

l

2
+
∂φu

∂t
−
∂φl

∂t
(44)

wherep is the static pressure and the subscriptsu andl refer to the upper and lower sides of the panel.
The last two terms in Eq. (44) refer to the unsteady case. The difference between them is obtained from the definition

of circulation (Katz and Plotkin, 1991), that is:

∂φu

∂t
−
∂φl

∂t
=
∂(φu − φl)

∂t
=
∂Γ

∂t
=

Γ(t) − Γ(t− 1)

∆t
(45)
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If ∂Γ/∂t = 0, Eq. (44) is analogous to the classical Bernoulli equation for the steady case, and the first two terms can
be determined with the aid of the Kutta-Joukowski theorem, that is:

V 2
u

2
−
V 2

l

2
=
V∞Γ∆bcosα

S
(46)

whereV∞ is the free stream velocity,α is the local angle of attack,∆b is the length of the panel in the spanwise direction
andS is the panel area.

Substituting Eqs. (45) and (46) into Eq. (44), the normal force in each panel can be computed and supplied as input
to the equation of motion (Eq. (6)). It is important to emphasize that the values ofΓ in the above equations are given by
Γi,j for the wing leading edge panels, and by(Γi,j − Γi−1,j) for the other panels (Benini, 2002).

4. ACTIVE CONTROL VIA FUZZY LOGIC

The FL controller for suppressing undesired aeroelastic response on a smart wing has been based on the Mamdani-type
fuzzy model (Yager and Filev, 1994). A decision surface has been obtained from error measurements based on structural
vibrations to be cancelled, and control action in terms of voltage variations to the piezoelectric actuators. The decision
surface represents, therefore, the control law on unitary discourse universe. Here, the control law models the consequent
control action like a PD-type control. The error signal comes from the difference between the wing tip displacement and a
reference value (here, it has been adopted as zero). The input and output signals are normalized by individual gains. These
gains are obtained manually and they guarantee stable and efficient response control. The fuzzy membership functions
are also obtained and tuned manually. Tab. 1 shows the rule basis and Fig. 6 shows the respective decision surface. The
controller gains tuned manually areke = 133m−1, k∆e = 341(m/s)−1 andku = 872V −1.

To enhance control actions, the decision surface has been interpolated using an ANN, in order to speed up the system
simulation (Souza et al., 2002). The ANN under consideration is a feed-forward neural network with four layers: 2 inputs
(error and change of error signals), 2 hidden layers with 20 and 10 neurons, respectively, and one output (control action).
The neurons activation functions are all sigmoid ones and the ANN has been trained with a back-propagation algorithm.
Figure 7 shows the closed loop to control de aeroelastic problem. The required control actions when using the FC can be
gotten now using it ANN, which represents with exactness thesame decision surface of FC.

Table 1. Rule basis of the FL controller.

e�∆e NG NP Z PP PG

NG NG NG NP NP Z
NP NG NG NP Z PP
Z NP Z Z Z PP
PP NP Z PP PG PG
PG Z PP PP PG PG

Figure 6. Decision surface of the FL controller. Figure 7. Smart wing aeroelastic control driagram.

5. RESULTS

Some results of a linear flexible wing structure with0.8m semi-span and0.25m chord are showed on Fig. 8 to 10, with
open-loop and closed-loop results. For structural model a30 × 5 Kirchhoff plate finite elements are considered. For the
aerodinamic mesh8 longitudinal and4 transversal panels are adopted. The velocity of the free stream is30m

s
. It is used

four pairs of hypothetical piezoelectric actuators, one above and other below of the main structure, distributed throughout
along the semi-span. The control signal is activated after0.1s, for the control of the tip wing vertical displacement. One
can note the suppression of vertical vibration of wing tip mid-chord reflecting on suppression of the first mode, as can be
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noticed on frequency response of vertical displacement. Itcan also be noted the piezoelectric input voltage, that can be
considered for optimization of the controller and minimising the cost of physical implementation.
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Figure 8. Wing tip torsion angle forV∞ = 30m
s
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Figure 9. Wing tip vertical displacement forV∞ = 30m
s
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Figure 10. Response frequency forV∞ = 30m
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Figure 11. Voltage applied to the piezoelectric actuators set.

Active control performance has also been verified for free stream velocity of140m
s

, as showed on Fig. 12 to 14. One
can observe an instability on open-loop, characterizing the flutter phenomena. The control signal is activated after0.1s,
for the control of the wing tip mid-chord displacement. It can also be noticed the vibration suppression, despite the flutter
occurrrence. Although the control action is for suppression of the first mode, the attenuation occurs on second flexural and
first torsional modes, as showed on Fig. 14, noticing the coupling of these modes, characterizing the flutter phenomena.
It’s because the position and dimensions of the actuators along the structure. However, the control action on piezoelectric
actuators for flutter suppression are excessively high comparing with the previous case. This means that in practical terms
this control is very expensive.
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Figure 12. Wing tip torsion angle forV∞ = 140m
s
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Figure 13. Wing tip vertical displacement forV∞ = 140m
s

.

6. CONCLUDING REMARKS

As it can be seen, the results of controlling the linear flexible wing structure are satisfactory, showing the suppression
of vertical vibration of the wing, reflecting on suppressionof vibration of the first mode. It can be seen too, that for flutter
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Figure 14. Response frequency forV∞ = 140m
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Figure 15. Voltage applied to piezoelectric actuators set.

phenomenon control it is satisfactory, but represents an expensive practical control to apply in aircraft, because thehigh
voltages required, despite the piezoelectric actuators being hypothetical.

The non-linearity by large displacement will be included inaeroelastic control of smart wing in the next step.
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