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Abstract. Aeronautical structures are submitted to a variety of ataetic phenomena that may compromise its per-
formance. With the development of new materials, aerocaltructures have becoming lighter, flexible, and theyehav
being more subjected to aeroelastic problems, such asrfantébuffeting. Researchers have been worked on alteestiv
to solve these undesired aeroelastic problems, as the receicept of smart or intelligent structures. Smart struesu
are those that present embedded sensors and actuators sirtieture, integrated with control systems and signal pro-
cessing, to enable the adaptation of the structural systechéanges in the operational conditions. Mathematical niede
that incorporate actuator elements or sensors are of giegtdrtance in preliminary analysis of smart aeronauticalist
tures. In this context, modeling methods are necessarygtucastructural dynamic behavior and unsteady aerodyeami
loading. The objective of this work is the study of an actizy controller for aeroelastic response of a smart windpwit
embedded piezoelectric actuators. Linear charactessticaeroelastic responses will be analised for criticaltbuton-
ditions. The finite elements method for the linear strudtomadel and vortex-lattice method for the unsteady aerodyna
model has been used.

Keywords. aeroelasticity, active control, smart structure, smarhgi piezoelectric actuator
1. INTRODUCTION

Aeronautical structures are subjected to many sourcesaitiations, mainly due to aerodynamic flow interactions,
that lead to disturbances and vibrations. With the curreqtiirements for lighter aircraft and the development of new
materials, aeronautical structures are becoming morebfeexand being more subject to aeroelastic problems, such as
flutter, buffeting and limit cycle oscillations. Other soas can affect the aeroelastic system, like strain displao¢or
geometric non-linearities, dry friction, shock wave maspand separated flows (Dowell and Tang, 2002). Anothes clas
of aircraft, like high altitude long endurance, specifigzalhmanned aerial vehicles (UAV’s) (Cesnick and Brown, 2002
Patil et al., 2001), and vehicles with morphing wings (Fersind Livne, 2000; Gern et al., 2001), have been studied to
enhance flight performance and less surface controls. Tdiesaft need specific control strategies mainly because of
non-linear effects (aerodynamics and structural dynanaiecd complex actuation system.

In this context, developments on numerical solutions fapakastic models to be used for aircraft design purpose
have become very important and have received special iattefrdm the scientific community. The numerical models for
aeroelastic analysis can be divided in two vast categarigish are: ones in the frequency domain and in the time domain
The frequency domain based solutions are the classical boesre valid only in the stability boundary, i.e., they can
only be employed for predicting critical aeroelastic caiodis. The time domain based solutions allow the deterriginat
of the aeroelastic response time history for any flight ctodj and they have the additional advantage of allowing the
inclusion of non-linear effects and the design of contratteyns for vibration suppression.

A great amount of research has been done to solve aeroaastiol problems, with application of active and passive
solutions to the structure. Recently, expressive devedoison the use of active materials incorporated into thettres
have been done. Piezoelectric materials have been the sexdbmes for sensors and actuators devices, as well as optic
fibers, shape memory alloys, and electro- and magnetoafgieal fluids and gels. With the purpose of modifying the
form or position, integrating active elements into the stinies together with a control system, signal processind, a
electronic systems, the concept of Smart Structure orligeelt Structure (IS) has been defined (Crawley, 1994). An
important aspect in the development of IS is the controlesyst Due to increasingly systems complexity, the non-
conventional control techniques have been explored in #sgd of non-linear controllers and/or in the operation of
complex environments with uncertainties and ambiguouarpaters. Non-conventional techniques are those that do not
follow the classic and modern control techniques approatére they comprise the artificial neural networks (ANN)
(Haykin, 1999) and fuzzy logic (FL) (Yager and Filev, 1994).

This work presents an active aeroelastic control strategyibration suppression of a flexible smart wing based on
fuzzy logic. The finite element method (FEM) has been used ddehthe wing structure, which has been assumed
with embedded piezoelectric actuators (Marques and Nawar2001). The vortex-lattice method (VLM) has been used
for the unsteady aerodynamic model (Benini et al, 2001).hBtuctural and aerodynamic models have been treated
separately and the information exchange between the ammodyg and structural meshes has been done by a surface
spline interpolation scheme (Benini, 2002). The controtmdology has been based on Mamdani-type FL control, to
aim vibration suppression on the wing tip, following the gedure by Gruppioni (2002) and Nagamine (2001). The FL
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controller has been emulated by an ANN, which interpoldtesiecision surface on pre-determined universe of diseours
The following sections present structural and aerodynanaidels, the FL controller design methodology, and the tesul
achieved for a hypothetical wing model.

2. MATHEMATICAL MODELING

This section will treat the mathematical modeling of a snflaible with the structural model approached by finite
element method, considering the Kirchhoff plate elemestiagptions.

2.1 Smart wing description

The flexible wing here can be approached by a cantilever barefore the aerodynamic model treats the wing as
plain plate. The dimensions of the wing &8 x 0.25m of semi-span and chord, respectively, wich are the length an
width of the main structure. The piezoelectric actuatoentare bonded along the semi-span, as shown in Fig. 1, always
at pairs (in top and under of the main structure).

==
AT AT

air flow

Figure 1. Schematic of the flexible smart wing structure.

2.2 Modal transformation

The wing structural response is assumed to be linear anadwithternal damping. The equation of motion for the
structure is shown in Eq. (1), whel¢ andK are the mass and stiffness matrices, &nd)}, {Z(¢)} and{L({z}, {Z},t)}
are the vectors, representing the displacements, actiefesand external mechanical, electric and aerodynaradihgs.

[M]{E(t)} + [K{(t)} = {L({x}, {2}, 1)} )
The mode shapes can be arranged in a matrix according to
[@] = [ {er} {w2} {ws} -+ {en}] )

that is named modal matrix and is used as a coordinate tramafion matrix, that is:

{z()} = [@{n(t)} = > b (t) ®3)

where{n(t)} represents the structural displacements in a modal domadican be interpreted as a vector of coefficients
which determines the influence of each mode shape in theqaigsiuctural response (Meirovitch, 1986).
Since the vectofn} is constant with time, it follows that:

{&(0)} = [@Ni()} @)
Substituting Egs. (3) and (4) in Eq. (1) and pre-multiplybrgh sides by®] 7,
[Mn]{ij(t)} + [Km]{n(t)} = [@]{L({z}, {&},1)]} (5)

where[M,,] = [®]T[M][®] and[K ,,] = [@] [K][®] are named modal mass and modal stiffness matrices, resggcti

Due to the orthogonality properties of the mode shapes, an@ve that the matricés/,,| and[K,,] are diagonal
matrices. In addition, it is possible to normalize the emgetors in a form thalt/,,,] = [I], and then the division of
both sides of Eq. (5) by the matrj/,,],

(i)} + [w’l{n(t)} = [T {L({x}, {7}, 1)} (6)

where[w?] is a diagonal matrix containing the squared natural freqgigsn

In order to simplify the solution of Eq. (6), it is useful tortsider only a few natural modes to describe the structural
response. This is done by truncating the summation in Eqlri{3act, only a few modes are necessary to obtain a solution
with good precision (Meirovitch, 1986).
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2.3 Model of the active structure

From the principle of Hamilton electro-mechanical vaoatl principle can be assessed. The FEM has been used
to model an active plate, representative for the wing stinectPiezoelectric behavior has been also incorporatdueto t
model.

2.3.1 Electro-mechanical behavior

From Hamilton’s principle, it follows:

to ta
5 / (T — U)dt + / SWpedt = 0 )
t1 ty

whereT is the total kinetic energy of the systeidi, the potential energy of deformation of the system aiid,. the
virtual work of the non-conservative forces acting in theteyn, between time interval to ¢s.
The kinetic energy’ of a plate, is given by (Meirovitch, 1986):

= / pla} T {a}av ©)

whereV is the volume of the platg, the mass density andj} the generalized velocity vector.
For piezoelectric materials the electro-mechanical ¢ariste equations are coupled (Preumont, 1997), given by:

{0} =[CP|{e} - [e{E}
{D} = [e]"{e} + [EHE} 9)
[e] = [d][C*]

where{c} is the stress vectoj('”’] the stiffness matrix{c} the mechanical strain vectde] the piezoelectric coefficient
matrix, { E'} the electric field vectof D} the electric charge density vectf$] the dielectric constant at constant strain
and[d] the piezoelectric constant matrix.

The system total potential energy comes from the constédwgguations and includes the mechanical and electric
potential energies (Marques and Nagamine, 2001), that is:

U=3 [y (ot - By DYV (10)
The total work of the applied external forces is given by:
W= {a}{P) + [ iRV + [ (o) {Fs)as, - [ (6)Qas; a1
\% S S1

where{ P, } is the concentrated force vect§i, } the body force vector over the voluriie { Ps} the surface force vector
applied to the aref;, {¢} the generalized displacement vectos} the electric potential vector ar@ the electric charge
over the surfacé.

Substituting Egs. (8), (10) and (11) into equation Eq. ($lds the variational equation, which is used to obtain the
FE model, that is:

Jyloo{dy ™ {a} — o{e}T[CF{e} + o{e} T [eH B} — S{E}T[EHE} + o{q} " {Pp}]dV (12)
+ [s, 0{a} " {Fs}dSy + 6{a} " {Pe} — [5,{#}QdS2 =0

2.3.2 Active plate via finite element method

The linear model in finite elements of the structure con&idgplate element was based on the Kirchhoff's hypothesis
and the electromechanical variacional principle for p&eaotric behavior (Lima, 1999). On the field of tensionssthi
model uses the rectangular element of Melosh, with threéharécal degrees of freedom per node, being displacements
u, v andw at axiesz, y andz, and an electric degree of freedafrthat depends on amount applied potential in the
element. Fig. 2 illustrates this element with piezoeledionded in the two faces of the main structure (plate), whgebe
andd respectively represent the length, width and rotation efféttes, and andh,. are the thicknesses of the plate and
and the piezoelectric ones.

Being the displacement on the neutral plan of the plate, evistance between to the neutral axis,ias it shows in
the Fig. 3, the nodal displacements are given by the follgkinematic relations:

Pohidad (13)
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Figure 2. DOF of plate finite element with piezoelec-
tric effect. Figure 3. Plate displacement on the neutral axis.

For this element it is necessary to use a function from patyiabinterpolation with 12 parameters, that is:

Wa, y, = di + dox + dgy + dax® + dszy + dgy® + dra® + dsa®y + doxy® + dioy® + dirda®y + digzy®  (14)
Writing w in the matrix form, it goes:

w = {P}"{d} (15)

According to Eqg. (13) and Eqg. (14), in the matrix forms, thegmlized coordinate vector can be writen as:

{q} = [X]{d} (16)
where[X] is:
P(xi,ys)
X) 24: OP (x4, v:) )
X] = ~ om, 17
=1 | OP(z,y:)
y;

Be [Q.,] according to (Zienkiewicz and Taylor, 2000):

oP 0P r
o= — — P 18
@l-| 5 5 ] (18)
Inverting the transformation matr{¥X’| and substituting in Eq. (16) it results in the following natr
[B.] = [Qu][X]7! (19)
where Eqg. (13) can be represented in the following matriritor
{¢} = [Z2][B.{ar} (20)
with:
—=z 0 0
[Z]=] 0 -z O (21)
0 0 1

According to Fig. 2, the coordinatesandy, for nodesi = 1..4, are: (z1,y1) = (—a,—=b), (z2,y2) = (a,=b),
(z3,y3) = (a,b) and(z4, ys) = (—a,b).
The nodal displacement relations for the plate elementigendy:

. ou 0w
= — = —z—
T ox Ox?
P (22)
Yoy 0y?
. b o o
oy 0x 0x0dy
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By Egs. (22) and (15) it follows:

o2p &p &pr 17

= 23
(@] ox?  Oy? 28z8y (23)

that substituing in the Eq. (16) results on the matrix:
[Bi] = [Q][X]7! (24)

Being, thus, the Eq. (22) can be represented in the followiatrix form:

{e} = —z[Bil{q} (25)

Potential energy

From Eq. (12), the potential energy of the main structurairent {/;; domain, that is, integration defined over the
intervalsx = [—a;al, y = [—b;b] andz = [—h/2; h/2]), is obtained by:

SU = / 5V {ordV = / SATICE] [}V (26)
Vst Vst
where[CZ] is the element constitutive equations given on matrix foym b
1 st 0
[CE] = EL"&; pst 1 0 (27)
1 — 0 0 1 — pst
2

whereF; is the Young’s modulus and,, is the coefficient of Poisson of the main structure.
Substituing Eq. (24) in Eq. (26), it follows:

Ust = {0q}" ., [Be]"[Z]T[CL][BrldV {dq} (28)

where the stiffness strutural matrix can be represented by:
g = | (BT CE BV 29)

The elasticity piezoelectric modulus,., the coefficient of Poissom,. and the constitutive equation of the piezoelec-
tric element, then, in the same way that it was made to gettifieess matrix of the main structure, the piezoelectric
stiffness matrix is:

) = [ (BT 2T (ORI BV (30)
Vpe
where the integration domain of the volurig. defined over the volumes of the piezoelectric elements, ithahe
intervalsz = [—a;a], y = [-b;b] andz = [—hye — h/2; —h/2] for piezoelectric below the main structure and=
[h/2; h/2 4 hy] for the piezoelectric one above.
The electro-mechanical stiffness matrices are given by:

ksl = [ (BT (21" Balav (31)
VpE
rga] = lgo)” (32)
where:
! 0
B = | P @)
0 &

The dielectric rigidity matrix is given by:

lrgg) = / By [€°][Bo)AV (34)

pe



Procedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasilia, DF

Kinetic energy

To calculate the term of kinetic energy of Eq. (8), considegs(20), resulting in the following expression:
T = [ oAy (BT 27 (2B bV (35)
where the mass matrix on volunireenclosing the maif;; and the piezoelectrit;,. volumes, is obtained as:
ml = [ ovlB.)"127(Z)BJav (36)

Virtual work of the forces and external loads

In accordance with the term of the virtual work done by theésrand external loads of the Eq. (12), and considering
Eqg. (20), the virtual work of the external forces vec{gt} is:

W = 6{q}7 / (BT {f.}dA (37)
A
where:
(F) = /A BT {f.}dA (38)

Global system equations

Substituting the kinetic energy equations, potential dbaation and work of the external forces in the electrome-
chanical variational principle equation and considerimg équilibrium for finite elements, one can yield the global d
namic equations of the system:

[qu]{‘j} + [qu]{Q} ={Fs} - [Kq¢>a]{¢} (39)

where [Myq], [Kqq), [Kqsa) are the mass, stiffness and electro-mechanical matrices{ &} and {¢} are external
mechanical and electric loading vectors.

3. VORTEX LATTICE METHOD

The VLM consists of distributing plane vortex singularitiever a lifting surface and its wake (Katz and Plotkin,
1991). The plane vortex singularities satisfy the Laplageagion and when it is combined with the uniform stream
incompressible and potential flows around the wing the aerahic loading can be calculated. Here, to implement
the VLM, the wing has been represented by a lifting surfad@auit thickness and discretized in quadrilateral elements
(panels). A vortex ring is associated with each panel, biegeading segment of each vortex ring placed on the panel
guarter chord line and its control point placed at the ceufttre three-quarter chord line. The wing discretizatiomesoe
is shown in Fig. 4. To guarantee that the flow streamlines pass the lifting surface, it is necessary to satisfy the
boundary condition of zero normal velocity on the wing soefaThis boundary condition is applied at the control points
and it results in the correct values for the vortex singtiksi(circulationl).

Ac,

i)

1 Ac,,

Ab, j+1 /4\ control
e 4 et

wing
leading edge

Figure 4. Wing discretization scheme (Katz and Plotkin,1)99

The boundary condition in each panel can be expressed as

(V¢ +vm +vw) - {n} =0 (40)
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where the gradient of the potential velocitycorresponds to the perturbed velocities induced by the wamtex singu-
larities,v,,, corresponds to the velocity of the wing motion (the freestrevelocity relative to the wing plus the velocities
of the wing structural deformations),, corresponds to the velocities induced by the wake,raisthe normal vector.

The velocityV induced by each straight vortex segment, extending fromtdoto point 2, at an arbitrary poirit,
obeys the Biot-Savart law, that is:

I' rixry 1 )
_ I oy (2 41
MmmeT”QM|m) @

where,r; andrs are the vectors that define the position of pdiin relation to the points 1 and 2.

It is important to note that the value of the circulatibris still not known in Eq. (41). So, only the values of the
other terms will be calculated. This is done by assuniing 1. The velocity induced by each vortex ring at a pafhis
obtained adding the results obtained with Eq. (41) for the &mrresponding vortex segments. The velocity is refeased
the velocity induced by the vortex ring on the control poinfs. Applying the zero normal velocity boundary condition
at the control poinfX = 1,

(V11T + V12T + Vi3T5 + ... + VimIDy + vl + 0,1) g =0 (42)

where the circulations in each vortex ring are the unknowisia is the number of panels used in the wing aerodynamic
discretization.

Based on Eq. (42), the so-called influence coeffici¢ais;, = Vi1 - ny) can be defined. Re-writing this equation
as a function of the influence coefficients for each ofitheontrol points and passing,, andv,, to the right-hand side
(RHS) of the equation, the following linear system is obéain

a1 a2 -+ Gim Iy Um1 + Vwi ny
a1 @22 -+ G2, T Um2 + Vw2 ng

_ e L @3)
Am1 Am?2 Tt Amm 1—‘m Umm + Vwm Nm

The evaluation of,,, consists of two steps: 1) the freestream velocity is obthineving the wing in the aft direction,
and 2) the velocities of the structural deformations araioledd solving the equation of motion (Eg. (6)). The velesiti
induced by the wakeu(, vector) are obtained employing the Biot-Savart law (Eq))4lt is important to consider that a
portion of the wake is generated at each time interval, aliagrto Fig. 5. The circulation values of the last vortex 8ng
generated are the same as those of the trailing edge vontgs; tb satisfy the three-dimensional Kutta condition. §hu
at each time interval new vortex rings are generated anddtresponding values of circulation are found. The value of
circulation of each wake vortex ring remains the same dualhtiie simulation time. In the present simulation, the wake
rollup has not been considered, so the wake is parallel tir¢lestream velocity plane.

trailing edge

wake vortex rings
corner points

Figure 5. Wake discretization scheme (Katz and Plotkin1)99

The solution of the linear system given by Eq. (43) providesdirculation values for the wing vortex rings, which
has been employed for the aerodynamic loads calculatiom ufikteady Bernoulli equation for each panel is:
b1 — Pu VUQ ‘/22 8¢u 8¢l

;2 2w o )

wherep is the static pressure and the subscripgad! refer to the upper and lower sides of the panel.
The last two terms in Eq. (44) refer to the unsteady case. Tfeahce between them is obtained from the definition
of circulation (Katz and Plotkin, 1991), that is:
Opu O O(pu—gn) 0L I(t)-T(t—-1)

ot ot ot ot At (45)
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If OT' /0t = 0, Eq. (44) is analogous to the classical Bernoulli equatirife steady case, and the first two terms can
be determined with the aid of the Kutta-Joukowski theordat is:

V2 Vl2 Voo I'Abcosa
I S cn— 4
2 2 S (46)

whereV, is the free stream velocity is the local angle of attack\b is the length of the panel in the spanwise direction
andS is the panel area.

Substituting Egs. (45) and (46) into Eq. (44), the normatéan each panel can be computed and supplied as input
to the equation of motion (Eq. (6)). It is important to emphaghat the values df in the above equations are given by
T'; ; for the wing leading edge panels, and(®y ; — I';_1 ;) for the other panels (Benini, 2002).

4. ACTIVE CONTROL VIA FUZZY LOGIC

The FL controller for suppressing undesired aeroelastipgrse on a smart wing has been based on the Mamdani-type
fuzzy model (Yager and Filev, 1994). A decision surface hreenlobtained from error measurements based on structural
vibrations to be cancelled, and control action in terms dfage variations to the piezoelectric actuators. The datis
surface represents, therefore, the control law on unitegodrse universe. Here, the control law models the coresgqu
control action like a PD-type control. The error signal carfrem the difference between the wing tip displacementand a
reference value (here, it has been adopted as zero). Thisingwutput signals are normalized by individual gains.sehe
gains are obtained manually and they guarantee stable ficiémfresponse control. The fuzzy membership functions
are also obtained and tuned manually. Tab. 1 shows the rale &iad Fig. 6 shows the respective decision surface. The
controller gains tuned manually akg = 133m =1, ka. = 341(m/s)~! andk, = 872V 1.

To enhance control actions, the decision surface has bespatated using an ANN, in order to speed up the system
simulation (Souza et al., 2002). The ANN under considendtia feed-forward neural network with four layers: 2 inputs
(error and change of error signals), 2 hidden layers withrD1) neurons, respectively, and one output (control action
The neurons activation functions are all sigmoid ones aadMiN has been trained with a back-propagation algorithm.
Figure 7 shows the closed loop to control de aeroelasticl@nobl he required control actions when using the FC can be
gotten now using it ANN, which represents with exactnesstme decision surface of FC.

Table 1. Rule basis of the FL controller.

NAe NG| NP| Z | PP| PG
NG [NG|[NG|[NP|NP| Z
NP [NG|[NG|NP| Z | PP

z NP| z | Z ]z ]|PP
PP [ NP| Z [ PP| PG| PG
PG Z | PP| PP PG| PG

Artificial Neural Network

i
! |
Referency —;—b | control action (V) |—|
Fuzzy Controller ; Aeroelastic Model
i
I
i

HIROGS
AR
Ity

S

Output

Figure 6. Decision surface of the FL controller. Figure 7. Smart wing aeroelastic control driagram.

5. RESULTS

Some results of a linear flexible wing structure witBm semi-span and.25m chord are showed on Fig. 8 to 10, with
open-loop and closed-loop results. For structural mod@l a 5 Kirchhoff plate finite elements are considered. For the
aerodinamic mesk longitudinal andt transversal panels are adopted. The velocity of the freaistis307*. Itis used
four pairs of hypothetical piezoelectric actuators, onevatand other below of the main structure, distributed thhmuwt
along the semi-span. The control signal is activated éfter, for the control of the tip wing vertical displacement. One
can note the suppression of vertical vibration of wing tiglrahord reflecting on suppression of the first mode, as can be
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noticed on frequency response of vertical displacemeraritalso be noted the piezoelectric input voltage, that ean b
considered for optimization of the controller and minimgsthe cost of physical implementation.

— open loop 0015
— - closed loop — open loop
— - closed loop

0,005

-0.005

Wing tip mid-chord vertical displacement (m)
°

4 L L L L ) 0015 L L L L .
0 01 02 03 0.4 05 () 01 02 03 04 05

time (s) time (s)

Figure 8. Wing tip torsion angle fdr,, = 307. Figure 9. Wing tip vertical displacement fok, = 302.

— openioop
— - closed loop

Voltage (V)

— open loop
— - closed loop

angle

content of torsion

0 10 20 30 40 50 60 70 80 9 100 110

. . n . . . . .
0.1 015 02 025 03 0.35 04 045 05
frequency (Hz)

time (5)

Figure 10. Response frequency #ag, = 30*. Figure 11. Voltage applied to the piezoelectric actuatets s

Active control performance has also been verified for freeesh velocity ofl 407, as showed on Fig. 12 to 14. One
can observe an instability on open-loop, characteriziegfliiiter phenomena. The control signal is activated @ftef,
for the control of the wing tip mid-chord displacement. Ihadso be noticed the vibration suppression, despite theiflut
occurrrence. Although the control action is for suppreassitthe first mode, the attenuation occurs on second flexadhl a
first torsional modes, as showed on Fig. 14, noticing the lbogipf these modes, characterizing the flutter phenomena.
It's because the position and dimensions of the actuatorgyahe structure. However, the control action on piezaetec
actuators for flutter suppression are excessively high esimg with the previous case. This means that in practicaige
this control is very expensive.

— open loop

4o — - closed loop
— open loop

— - closed loop

°

Wing tip mid-chord vertical displacement (m)

°

L L L L , ime (s)
0 01 0.2 03 0.4 05
time (s)

Figure 12. Wing tip torsion angle far,, = 140~*. Figure 13. Wing tip vertical displacement fgk, = 1407.

6. CONCLUDING REMARKS

As it can be seen, the results of controlling the linear flexiting structure are satisfactory, showing the suppressio
of vertical vibration of the wing, reflecting on suppressadvibration of the first mode. It can be seen too, that for dutt
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Figure 14. Response frequency 16y, = 140*. Figure 15. Voltage applied to piezoelectric actuators set.

phenomenon control it is satisfactory, but represents geresive practical control to apply in aircraft, becausettig
voltages required, despite the piezoelectric actuatdrgyigypothetical.
The non-linearity by large displacement will be includecaroelastic control of smart wing in the next step.
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