
Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

NUMERICAL PROCEDURE TO OBTAIN GENERALIZED DARCY 
MODELS FOR NON-NEWTONIAN POWER-LAWFLOWS THROUGH 

POROUS MEDIA: APPLICATION TO A THROAT BETWEEN SPHERES 
 
Arthur Furtado Santos, arthurfsantos@globo.com 
Grupo de Escoamento de Fluidos Complexos, Laboratório de MecÂnica Teórica e Aplicada, PGMEC, Department of Mechanical 
Engineering, Universidade Federal Fluminense,  Rua Passo da Pátria 156, Niterói, 24210-240, RJ, Brasil. 
Marcos Versiani,  marcosversiani@yahoo.com.br
Grupo de Escoamento de Fluidos Complexos, Department of Mechanical Engineering, Universidade Federal do Espírito Santo, 
Avenida Fernando Ferrari 514, Goiabeiras, 29060-900, Vitória, ES, Brasil. 
Roney Leon Thompson, roney@mec.uff.br 
Grupo de Escoamento de Fluidos Complexos, Laboratório de MecÂnica Aplicada, PGMEC, Department of Mechanical 
Engineering, Universidade Federal Fluminense,  Rua Passo da Pátria 156, Niterói, 24210-240, RJ, Brasil. 
Edson José Soares, edson@ct.ufes.br
Grupo de Escoamento de Fluidos Complexos, Department of Mechanical Engineering, Universidade Federal do Espírito Santo, 
Avenida Fernando Ferrari 514, Goiabeiras, 29060-900, Vitória, ES, Brasil. 
 
 
Abstract. The injection of polymeric liquids in porous media for the oil recovery in reservoirs is becoming an 
important technique in this process. The classical Darcy law is widely used to represent the relation between pressure 
drop and flow rate for Newtonian fluids in porous media. An interesting feature of this model is the fact that rheology 
(viscosity) and pore structure (permeability) are independent components of mobility. This model is generalized in the 
present paper to account for non-Newtonian effects specially concerning extensional flows which are known to be 
predominant in porous media. A numerical procedure is created to capture the mobility sensitiveness to rheological 
and pore structure parameters. The idealized pore geometry tested is a throat between two spheres of equal diameters. 
This contraction-expansion geometry provides the desired extensional flow. The non-Newtonian constitutive equation 
employed is a power-law model. Some of the hypothesis considered to model the non-Newtonian flow in this idealized 
porous media were tested in a Finite Element code which has supported the assumptions. Although we have not come 
to a closed form for the mobility we have obtained a numerical constitutive model which can be adapted to different 
idealized pore structures and different constitutive models for the non-Newtonian behavior of the fluid.. 
  
Keywords:  displacement of a liquid, non-Newtonian Fluids, bypass flow, finite element method, surface tension.  

 
1. INTRODUCTION  
 
1.1- Motivation and objective 
 

Oil is energy on demand and it has increasing prices. That makes the industry turns its attention to new and not 
yet explored fields, as heavy oil ones, high viscosity ones, which in the past were not viable. In Brazil, most of the oil 
fields explored until now are heavy oil fields. The advances in technology in the industry, such as drilling fluids, new 
kind of bits and casings, wireline logging tools increasing the recovery factor of this fields. 

Reservoir engineering studies, reservoir characterization, properties of the rocks and of the fluids that flow 
through them together with the way fluids interact inside these rocks, are phenomenological studies that are becoming 
more intense with this new scenario stated above. All this effort has the objective to maximize hydrocarbons production 
with lower prices. 
Reservoirs formed by gravitational flow in deep waters contains most of the oil reserves of oil in the Brazilian 
Continental Edge, specially in Campos Basin.  
The distribution and flowing of fluids inside the reservoir are mainly controlled 

(1) by the shape (Geometry) of the sedimentary bodies and 

(2) how these bodies are arranged 

Because of that, it is necessary that, during the modeling procedures of reservoirs, every production unit (zone or sub-
zone) be presented using parameters that describes accordingly its geometrical and architectural characteristics. 

All reservoir models are made from subsurface data (seismic, wireline logging, cores) extracted directly from 
the reservoir, complemented by conceptual geologic models and dimensional parameters, obtained from analog systems 
( ex. depositional systems). The main reason to use analog systems is the possibility to fulfill the spaces between the 
subsurface data that comes from the distance between wells (which can be about many kilometers in offshore deepwater 
fields) and by the limits of seismic. The correct integration between subsurface data with analog systems data means the 
increasing in the assurance of geological models used in the characterization procedures, modeling and reservoir 
management.    
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In some applications of secondary and tertiary oil recovery is sometimes useful to inject a viscoelastic fluid to displace 
the oil inside the porous media. However, the porous media is, generally, made of pores that have different diameters 
during the trajectory of the fluid and, therefore this fluid experiences a type of flow that has a strong extensional 
character. Astarita (1979) and Thompson and Souza Mendes (2005) present interesting discussions on flow 
classification. The mechanical power loss of a liquid due to viscous action while flowing through channels is of the 
form , where Q is the volume flow rate and pQΔ pΔ  the pressure drop. Since viscoelastic fluids are generally 
extensional-thickening the classical Darcy law is not able to capture the interaction between the fluid and the porous 
media as it does when a Newtonian fluid flows inside a porous media. 
 In this paper our goal is to develop a numerical method to obtain a modified Darcy model that takes into 
consideration non-Newtonian aspects of the fluid that flows inside a porous media. More specifically we imagine an 
ideal porous media, with a pre-determined converging-diverging geometry and develop an algorithm that has the 
mobility of the porous media as an output. The present article deals with a constitutive relation between the pressure 
gradient and the average velocity. Besides that, it carries information about the fluid behavior in the extension. 
This relation is developed in two steps. Firstly the pressure drop / flow rate relationship for an ideal pore channel is 
obtained. Then a capillary model theory is applied to obtain the sought-for constitutive relation. The proposed relation 
needs to be validated comparing pressure drop / flow rate results with experimental data obtained in a geometry similar 
to the one used in theoretical model. 
 
2.THE POROUS MEDIA MODEL 
 
2.1. Porous media characterization 

 
Figure (1a) represents a portion of frontal area A and length 2L of an idealized homogeneous porous media which is 
disposed in such a way that it allows the passage of the fluid only in one (z) direction. In this area A there is a number N 
of pores. The elementary pore, in the present work, is idealized as a convergent-divergent spherical throat as despicted 
in Fig. (1b). 
 
 
 
 
 

A 

2L 

z 

 
 

Figure 1.1 – Schematic of the idealized porous media. 
 

 
The equation of the pore curve is given by 
 

222 ))(()( esfesf RHzRLzR −−+−=                                             (1) 
 
Where L is half of the length of the porous element in z direction and  is the position of the solid surface. The 
geometrical restrictions are 

)(zR

 

esfRLz ≤≤                                                 (2) 

esfesf RzRzL ≤−≤−≤0                                               (3) 
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Solving for  and chosing the lower side, we have )(zR
 

22 )()( zLRRHzR esfesf −−−+=                                (4) 

 
  
 
and the volume of one half-pore ( ) is given by 1∀
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Therefore we can have a relation between microscale and macroscale through the porosity φ  of this porous media 
 

 1N
AL

φ ∀
=                                                                                                                                                          (6) 

 
Besides that, the relation between global flow rate, Q ,and local flow rate, , as a function of the porosity is given by 1Q
 
  

 1
1

ALQ NQ Q1
φ

= =
∀

                                                                                                                                      (7) 

 
 
 
2.1. Hypothesis 
  

 
2.2.1 Incompressible material 
 

 2 (́ )( ) ( ) ( ) 2 ( )
( )

du R zu z R z C z u z
dz R z

= ⇒ = −                                               (8) 

                     
where  is the mean velocity at position z, C is a constant, and ( )u z (́ )R z is the derivative of R with respec to z. 
 
2.2.2 Lubrication approximation 
 

 
4 2

1
( ) ( )( ) ( ) ( )

8 ( ) 8 ( )
R z dp R z dpQ z u z

z dz z dz
π
η η

= − ⇒ = − z                                                                                                   (9) 

 

where  is the flow rate through one pore, 1Q ( )zη  is the viscosity of the material at position z, and ( )dp z
dz

is the 

pressure gradient. This approximation also carries a symmetry of the problem in z = L, indicating that the mean velocity 
and pressure gradient have the same values for z and 2L-z. 
                                                                                   
2.2.2 Constitutive equation for the liquid 

 
1

( )
nduz K

dz
η

−

=                                                                                                                                                    (10) 

 
where K is a consistency index and n is a behavior index.       



 
 
 
 
 
 
2.3. Mathematical formulation 
 
Equation (9) can be integrated through half of the domain  

 2
0

(0) ( ) 1 8 ( ) ( )
( )

Lp p L P z u z dz
L L L R z

η− Δ
= = ∫                                                                                                    (11)  

 
Given a flow rate, Q , the geometrical parameters, and the porosity, φ , we can integrate, numerically, Eq.(11). 
Therefore, we can find the mobility M of the porous media calculating the following ratio 
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3. HYPOTHESIS VALIDATION 
 
The validation of the hypothesis made was done by a finite element galerkin numerical analysis applied at half of the 
physical domain for the case where esfL R= . Figure (3.1) shows a representative mesh of the problem. Figure (3.2) 

shows a comparison between the mobility obtained by for the domain between 0 2z L≤ ≤  and half of this, 
0 z L≤ ≤ . As expected, the mobility for the Newtonian fluid is constant while for non-Newtonian fluids, the mobility 
varies whith the pressure loss. It can also be seen that there is a certain point above which the mobility changes its 
general tendency. 
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Figure 3.1 – Representative mesh of the half of the domain indicated in Figure 1.1 
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Figure 3.2 – Mobility for (a) the hole domain; (b) half of the domain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
4. PRELIMINARY RESULTS 

 
 
Figure 4.1 shows the plot of the viscosity with the position inside de pore. As expected, the viscosity of the Newtonian 
fluid Fig. 4.1(b) (n=1) is constant over the entire range. On the other hand, for an extensional-thickening fluid as the one 
represented by Fig. 4.1 (a) (n=1.2), there is a variation on the resistance it opposes to the flow, since the mean rate of 
deformation is not constant throughout the pore. 
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                          (a) n=1.2                                                              (b) n=1 
 Figure 4.1 – Variation of viscosity with the longitudinal position z (a) for an extensional power-law model with the 
behavior index n = 1.2; (b) for a Newtonian fluid. 
 
 
This result is better explored in Fig. (4.2) where there is a representation of the variation of the viscosity for a diversity 
of power-law fluids. As it can be seen, for viscosity-thinning fluids, Fig.(4.2a), the viscosity increases for higher values 
of z; while the opposite tendency is shown when a viscosity-thickening fluid passes through the pore, Fig. (4.2b,c). This 
happens because in this range of z, the deformation rate decreases when we increase z. 
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Figure 4.2 – Variation of viscosity with the longitudinal position z (a) comparison between two viscosity-thinning 
fluids, n=0.8 and n=0.5, (b) comparison between three viscosity-thickening fluids, n=1.2 , n=1.7, and n=2.0; (c) 
comparison between two viscosity-thickening fluids, n=2.0 and n=2.5. 
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The other preliminary analysis done in the present work is the study of the variation of the mobility with the geometry 
of the elementary pore. For this purpose, we decided to compute the sensitiviness of a dimensionless mobility with 
respect to dimensionless representative aspect ratios of the problem. Besides the fact that the porous space consttitutes a 
void between two spheres, the geometry of the pore is characterized by two dimensionless numbers, namely 

*

esf

LL
R

= , and *

esf

HH
R

= . The dimensionless mobility is formed, in the present work, by the mobility obtained for 

the non-Newtonian fluid divided by the correspondent Newtonian one. Figures (3.4) and (3.5) Mobility changes when 
we change these geometric numbers. 
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Figure 4.3 – Variation of the dimensionless mobility as a function of  (a) comparison between two viscosity-thinning 
fluids, n=0.8 and n=0.5, (b) comparison between three viscosity-thickening fluids, n=1.2 , n=1.7, and n=2.0; (c) 
comparison between two viscosity-thickening fluids, n=2.0 and n=2.5. 
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Figure 4.4 – Variation of the dimensionless mobility as a function of  (a) comparison between two viscosity-
thinning fluids, n=0.8 and n=0.5, (b) comparison between three viscosity-thickening fluids, n=1.2 , n=1.7, and n=2.0; 

(c) comparison between two viscosity-thickening fluids, n=2.0 and n=2.5. 
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5. CONCLUSIONS  



 
 Probably the biggest problem to make a numerical evaluation of this problem is the extensional viscosity data 
due to its extreme difficulty to obtain a purely extensional flowing. 
 Typical flowing in the porous media is in a divergent-convergent way. However, flowing through real porous 
media cannot be classified as shear flowing. Convergent-divergent passages claims a mainly extensional kinematics.  
On the other hand, it is known that non newtonian fluids has an extensional viscosity that drastically increases as the 
extensional index. So we can imagine that flowing of these fluids through the porous media, most of the energy loss 
will be due to mechanical behavior of the extension. 
 A theoretical simple model was used to obtain a constitutive relation for flowing in extensional thickening 
fluids through the porous media. The Non Newtonian behavior of the fluid is considered as a generalized Newtonian 
fluid with Power Law viscosity and extensional index. 
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