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Abstract. This paper describes the stiffness analysis of a 6-RSS  parallel manipulator. The 6-RSS kinematic chain is 
composed by six legs where the axis of the actuators are placed two-by-two along the three axis of a Cartesian 
reference frame. The manipulation performances of a robot are directly affected by the stiffness structure because 
external forces and moments may cause large deflections in the links and joints, which are undesirable from the 
viewpoint of both accuracy and payload performances. The stiffness analysis is based on standard concepts of static 
elastic deformations. Its analysis can be carried through from the stiffness matrix that can be numerically computed by 
defining a suitable model of  the manipulator, which takes into account the stiffness properties of each element such as 
links, actuators and joints. In this paper the Jacobian matrix is obtained from the 6-RSS structure kinematic model and 
then, its stiffness matrix too. A general scheme of the strucuture considering all elements stiffness (links and joints) is 
presented. In order to simplify the model, the joints stiffness have been neglected. The obtained stiffness matrix is used 
to map the end-effector displacement when external wrench are applied on it. The used methodology can be applied to 
analyze the stiffness of other robots structures.  
 
Keywords:  Parallel Manipulators, stiffness analysis, compliance matrix. 

 
1. INTRODUCTION  
 

A load applied on a body produces changes on its geometry that are known as deformations or compliances 
displacements. Stiffness can be defined as the capacity of a mechanical system to sustain loads without excessive 
changes of its geometry (Rivin, 1999).  Moreover, the stiffness of a body can be defined as the amount of force that can 
be applied per unit of compliance displacement of the body (Nof, 1985), or the ratio of a steady force acting on a 
deformable elastic medium to the resulting displacement (AccessScience, 2003). 

Compliance displacements in a parallel robotic system improve for mechanical float of the end-effector relative to 
the fixed base. This produces negative effects on static and fadigue strength, wear resistance, efficiency (friction losses), 
accuracy, and dynamic stability (vibration). The increasing importance of high accuracy and dynamic performance for 
parallel robotic systems has increased the use of high strength materials and lightweight designs by giving significant 
reduction of cross-sections and weight. Nevertheless, these solutions also increase structural deformations and may 
result in intense resonance and self-excited vibrations at high speed (Rivin, 1999). Therefore, a study of stiffness 
becomes of primary importance in the design of multibody robotic systems in order to properly choose materials, 
component geometry, shape and size, and interaction of each component with others. Some examples of design 
procedures based on stiffness analysis can be found in (Liu et al., 2000) (Simaan and Shoham, 2002)                 
(Carbone et al., 2003). In particular, Liu et al. propose an optimum design procedure for 3 degree of freedom spherical 
parallel manipulators as based on the computation of conditioning and stiffness indices. Simaan and Shoham (2002) 
propose an optimum design procedure for the synthesis of a planar robot having variable geometry as based on stiffness 
performance. Carbone et al. (2003) propose a procedure for optimal design of a biped leg module for humanoid robots 
by considering stiffness performance and lightweight design.  

A stiffness analysis  can be also very useful for estimating the expected performance of a system in term of payload 
and accuracy and for verifying the feasibility of specific tasks as proposed for example in (Pai and Leu, 1991)   
(Carbone et al., 2002) and (Ceccarelli et al., 2002).  

The overall stiffness of a manipulator depends on several factors, including the size and material used for the links, 
the mechanical transmission mechanisms, the actuators, and the controller (Tsai, 1999). In general, to realize a high 
stiffness mechanism, many parts should be large and heavy. However, to achieve high speed motion, these should be 
small and light. Moreover, one should point out that the stiffness is greatly affected by both the position and the values 
of the mechanical parameters of the structures parts (Yoon et al., 2004). 

For the stiffness analysis is necessary obtaining the stiffness model of the parallel structure. In the literature there are 
three main methods have been used to derive the stiffness model of parallel manipulators (Deblaise et al., 2006). These 
methods are respectively based on: the calculation of the Jacobian matrix (Gosselin, 1990) (Khasawneh and Ferreira, 
1999) (Zhang et al., 2004) (Zhang, 2004) (Gosselin and Zhang, 2002) (Majou et al., 2004) (Company et al., 2005); the 
Finite Element Analysis (Corradini et al., 2004) (Bouzgarrou et al., 2004 ) and the matrix structural analysis (Huang et 
al., 2002) (Li et al., 2002) (Martin, 1966) (Wang, 1966) (Imbert, 1979) (Clinton et al., 1997) (Dong et al. ,2005)  

 
 



The methods based on calculation of the Jacobian matrix are simple and they supply one initial estimate of the 
stiffness matrix. One of the first stiffness analysis has been conducted by Gosselin (1990) and the stiffness of a Parallel 
Kinematic Machines is mapped onto its actuated joints whereas links are supposed as perfectly rigid. This approach was 
also involved by Khasawneh and Ferreira (1999) and Zhang et al. (2004). To take into account the link flexibility, this 
first model was supplemented by the lumped model developed by Zhang (2004). Flexible links are then replaced by 
rigid beams mounted on revolute joints plus torsional spring located at the existing joints.  

The uses of Finite Element Analysis models are reliable, but these models have to be remeshed over again, these 
results in very tedious and time-consuming routines (Huang et al., 2002). However these models are well adapted to 
validate analytical models (Khasawneh and Ferreira, 1999) (Li et al., 2002), or some experimental results       
(Corradine et al., 2004). Bouzgarrou et al. (2004) used the Finite Element Analysis model to study static rigidity and 
natural frequencies of the T3R1 parallel robot. 

Another methods based on matrix structural analysis are not so often used. Clinton et al. (1997) used this approach 
to derive the stiffness matrix for each element of a Stewart platform and then assemble individual ones into a system 
stiffness matrix. This approach is also used in Huang et al. (2002) to give the stiffness model of a machine frame 
considered as a substructure. The superposition principle is used to achieve the stiffness model of the machine structure 
as a whole.  

In this paper is presented the calculated stiffness matrix of the 6-RSS parallel manipulator. This matrix can be 
computed based on lumped stiffness parameters of the links. The Jacobian matrix is obtained from the kinematic model 
of the 6-RSS parallel manipulator and then the stiffness matrix is calculated. The end-effector output forces are related 
to its deflections by the stiffness matrix. With the stiffness matrix one do the map of the compliance displacement of 
end-effector as function of the external efforts applied on its center, and in this paper it is carried through for different 
configurations of 6-RSS parallel manipulator.  

 
2. THE 6-RSS PARALLEL ARCHITECTURE 

 
The 6-RSS parallel architecture is a 6 degree of freedom manipulator, which is characterized by a base and a 

platform (end-effector), connected by six RS-SS segments, where the R-joint is on the Cartesian axes, two joints by axis, 
as shown in Fig. 1. The Cartesian system is the base of the structure where the actuators are mounted, reducing dead 
loads. The links can be constructed by light and resistant materials that make then rigid, with low inertia and in a 
modular construction. The S-joints on the other extremity of the segments are connected at the end-effector, consisting 
in a virtual cube where the S-joints are tied on the center of its faces, having then, three crossed segments. Kinematics 
variables are the input angles αi (i=1 to 6) in the R-joints. The studied structure has the RS-segment and the SS-segment 
the same length and:  |b1b2 | = |b3b4 | = | b5b6 | = | p1p2 | = | p3p4 | = | p5p6 |, Fig. 1. 
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Figure 2. The built prototype of the 6-RSS Cartesian parallel manipulator. 
 

 
 
 
                     (a) Detail of legs and actuators.                   (b) End-effector with a linear transducer. 
 

Figure 3. Detail of the prototype of a 6-RSS Parallel Manipulator. 
 

2.1. Inverse Kinematic Model  
 

Kinematic equations can be obtained by using a suitable analysis procedure with a vector and matrix formulation 
(Bezerra, 1996). Equations can be written by considering a generic reference frame fixed to the base (0F, xF, yF, zF) 
and another at the platform (0M, xM, yM, zM) as shown in Fig. 4. The parameters are: αi are the generalized 
coordinates; bi

 the position vector of the base points bi (position of the R-joint in the base), Si and Li the arm and the 
forearm vectors, all referred to the base reference frame, and Si and Li their lengths; pi the position vector of the 
platform points pi (position of the S-joint at the mobile platform), referred to the mobile reference frame. All parameters 
for i=1 to 6. 
 
 



 
 

Figure 4.  Vectors for modeling the mechanism. 
 

 
From Figure 4 one can obtain: 
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In Equation (2) only the length Li of the vector Li is known. Then, one can write: 
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Choosing proper reference frames, Eq. (4) can be simplified. In this work the used reference frames are: (Xb, Yb, Zb ) 
at the base, where the origin coincides with point O; ( Xp, Yp, Zp ) at the center of mobile platform as represented in   
Fig. 1. The matrix of rotation [R] is given by the Euler angles (rotation φ1 about x, rotation φ2 about y and rotation φ3 
about z): 
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The inverse kinematic model of the 6-RSS parallel manipulator obtains the co-ordinates αi (i=1 to 6) when the 

position (tx, ty, tz) and orientation (φ1, φ2, φ3) of the platform are known. Equation (4) constitute a system with six 
variables: α1, α2, α3 , α4 , α5 and α6, representing the inverse kinematic model of the  6-RSS parallel manipulator. In this 
system, vectors pi, bi and t, the matrix [R] and lengths of Si and Li vectors are known. Only the generalized coordinates 
αi (i=1 to 6) are unknown.  

This system has 64 solutions in general. But the system solution has repeated roots, including configurations not 
possible to be attained by the mechanism, having then only one set of roots αi (i=1 to 6) valid (Bezerra, 1996) 
(Carvalho, et al., 2001).  
 
3. STIFFNESS ANALYSIS OF 6-RSS PARALLEL MANIPULATOR 
 
3.1. Stiffness Model 
 

The stiffness properties can be defined through a 6 x 6 matrix that is called as stiffness matrix K. This matrix gives 
the relationship between the vector of the compliance displacements { }TzyxS 321 ,,,,, φφφ ∆∆∆∆∆∆=∆ occurring to a 
frame fixed at the end of the kinematic chain when a static wrench { }Tzyx TTTFzFyFxW ,,,,,= acts upon it (Tsai, 1999). 
The relationship between the vector of the compliant displacement S∆ and external wrench W can be written in the 
form, Eq. (6): 
 

SKW ∆=                                   (6) 
 

The stiffness matrix can be numerically computed by defining a suitable model of the robot, which takes into 
account the stiffness properties of each element of the robot and, in particular, the lumped stiffness parameters are 
modeled as linear and torsion springs. A simplified stiffness model of 6-RSS Parallel Manipulator can be defined as 
show in Fig. 5. It is worthy to note that the stiffness matrix is configuration dependent since it is a function of the input 
angles. Therefore, the solution of the inverse kinematics is necessary.  

 

 
 

Figure 5. Stiffness Model for the 6-RSS Parallel Manipulator. 



In Figure 5 the spherical joints are changed for torsion spring, where Ti (i = 1 to 6) are the torsion springs in place of 
revolute joints;  kfi  and kai (i = 1 to 6) are linear spring that represent the forearm and arm, respectively. Finally Tfi  and 
Tai  (i = 1 to 6) represent the torsion spring of the spherical joints at the extremity of segments RS and SS respectively. 
 
3.2. Jacobian Matrix 
 

Several different approaches can be used for deriving the stiffness matrix. A first approach is based on the 
computation of the Jacobian matrix for the given multibody robotic system. With the inverse kinematic model of the 
architecture it can write: 
 

α = G S                    (7) 
 
where α  is the vector of the joint coordinates and  S = [tx ty tz φ1 φ2 φ3]T is the vector expressing position and orientation 
of a reference frame attached to the end-effector with respect to the fixed reference frame;  G is a matrix expressing the 
inverse kinematics. By using Taylor series expansion for Eq. (7) and considering only its first term, one can write: 
 

∆α = Jx ∆S                                                         (8) 
 
where ∆α is the vector of increments of the joint coordinates, ∆S is the vector of increment of the tx,ty, tz, φ1, φ2 and φ3 
and Jx is the Jacobian matrix relative of the inverse kinematic model. The Jacobian matrix can be written in form: 
 

Jx = [J1, J2, …, J6]                (9) 
 
where 
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By applying the principle of duality between the force/torque and velocity fields (Bashar et al., 1999), one can write: 

 
FJW T

x=                 (11) 
 
where F = {  is the vector of forces acting on each link;  is the transpose matrix of the Jacobian 
defined in Eqs. (9) and (10). Moreover, neglecting the effects in the joints and considering Fig. 5 
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where ki (i = 1,…,6) are the lumped stiffness parameters of the i-th link. From Equations (8) and (12)  
 

F = KL Jx ∆S                          (14) 
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Multiplying both sides of Eq. (14) by  and substituting in Eq. (11) one have T
xJ

 
SJW T

x ∆=  J K xL                   (15) 
 

In this way, from Eqs. (6) and (15) the stiffness matrix of 6-RSS parallel manipulator can be defined as: 
 

 J K xL
T
xJK =               (16) 

 
4. NUMERICAL ESTIMATION OF STIFFNESS PERFORMANCES 
 

From Figure 5, the 6-RSS parallel manipulator has six set of equals forearm and arm. Therefore, Eq. (16) can be 
simplified considering a same lumped stiffness parameters k (KL = diag(k)) 
 

 J x
T
xkJK =                (17) 

 
Figure 6 show one set of forearm and arm of the 6-RSS parallel manipulator with the lumped stiffness parameters, 

considering only the stiffness of the forearm and arm: 
 

 
 

Figure 6. Lumped Stiffness Parameters. 
 
 

For the structure 6-RSS the forearm and arm have the same length. Therefore, referring to Fig. 6 the equivalent 
lumped stiffness parameter for each leg can be write: 
 

111 −−− += aifii kkk    for (i = 1,...,6)              (18) 
 

The lumped stiffness parameters kfi and kai are calculated as: 
 

i

ii
aifi L

AEkk ==                  (19) 

 
where Ei is the Young’s module of the material, Ai is the section of the link and Li is its length. Based on prototype the 
scalar lumped stiffness parameter k is 1,056e7 N/m. Using Equation (16) and (6) the compliance displacement for a 
given external wrench can be computed as: 
 

∆S = K-1 W              (20) 
 



By using the proposed formulation the compliances displacements, which are due to the external force and torque 
can be numerically computed.  Tables 1, 2 and 3 show the computed values of the displacements of 6-RSS parallel 
manipulator in three different configurations. The Figure 7 plots the compliance displacement in function of an applied 
external wrench.  This proposed formulation can be also used to compute the extreme values of the stiffness over the 
workspace of the manipulator. 
 

Table 1. Displacement of 6-RSS parallel manipulator when α1 = α2 = α3 = α4 = α5 = α6 = 0 degree. 
 

∆x6-RSS Fe = (100 ,0, 0) 
Te = (0, 0, 0) 

[N; Nm] 

Fe = (0 ,100, 0) 
Te = (0, 0, 0) 

[N; Nm] 

Fe = (0 ,0, 100) 
Te = (0, 0, 0) 

[N; Nm] 

Fe = (100 ,100, 100) 
Te = (0, 0, 0) 

[N; Nm] 
∆tx [mm] 0.0526 0 0 0.0526 
∆ty [mm] 0 0.0526 0 0.0526 
∆tz [mm] 0 0 0.0526 0.0526 
∆φ1 [º] 0 0 0 0 
∆φ2 [º] 0 0 0 0 
∆φ3 [º] 0 0 0 0 

 
Table 2. Displacement of 6-RSS parallel manipulator when α1 = α2 = α3 = α4 = α5 = α6 = 10 degree. 

 
∆x6-RSS Fe = (100 ,0, 0) 

Te = (0, 0, 0) 
[N; Nm] 

Fe = (0 ,100, 0) 
Te = (0, 0, 0) 

[N; Nm] 

Fe = (0 ,0, 100) 
Te = (0, 0, 0) 

[N; Nm] 

Fe = (100 ,100, 100) 
Te = (0, 0, 0) 

[N; Nm] 
∆tx [mm] 0.0629 -0.0156 -0.0156 0.0317 
∆ty [mm] -0.0156 0.0629 -0.0156 0.0317 
∆tz [mm] -0.0156 -0.0156 0.0629 0.0317 
∆φ1 [º] 0 0 0 0 
∆φ2 [º] 0 0 0 0 
∆φ3 [º] 0 0 0 0 

 
Table 3. Displacement of 6-RSS parallel manipulator when α1 = 5; α2 = -10; α3 = 3;  α4 =  4; α5 = 1; α6 = 2 degree.  

 
∆x6-RSS Fe = (100 ,0, 0) 

Te = (1, 0, 0) 
[N; Nm] 

Fe = (0 ,100, 0) 
Te = (1, 0, 0) 

[N; Nm] 

Fe = (0 ,0, 100) 
Te = (1, 0, 0) 

[N; Nm] 

Fe = (100 ,100, 100) 
Te = (1, 1, 1) 

[N; Nm] 
∆tx [mm] -0.0970 -0.1193 -0.1191 0.1566 
∆ty [mm] -0.5817 -0.4009 -0.4680 0.4237 
∆tz [mm] -0.5300 -0.4165 -0.3780 0.4006 
∆φ1 [º] 12.8729 10.2236 10.5190 -7.5639 
∆φ2 [º] 6.2878 4.9498 5.1038 -4.1049 
∆φ3 [º] -18.9019 -14.9422 -15.3615 12.2677 

 
From Table 1 for the initial condition (α1 = α2 = α3 = α4 = α5 = α6 = 0) the applied Forces produce the same 

displacement in the direction of the force when other forces are zeros. If the same values of forces are applied the 
compliance displacement and angular displacement are equals.  From Figure 7 if the external forces increase the 
displacements increase too. 
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Figure 7.  Displacements of 6-RSS parallel manipulator as a function of  Fx = Fy = Fz when Tx = Ty = Tz = 0 for       
α1 = 5; α2 = -10; α3 = 3;  α4 =  4; α5 = 1; α6 = 2 degree. (a) ∆tx; (b) ∆ty; (c) ∆tz; (d) ∆φ1 [º]; (e) ∆φ2 [º]; (f) ∆φ3 [º] 

 
5. CONCLUSION 

 
In this paper the stiffness of 6-RSS parallel manipulator has been carried out as based on suitable kinematic and 

stiffness models. The Jacobian matrix is derivate from the inverse kinematic model of the structure. Then the stiffness 
matrix is calculated considering only the flexibility of the forearms and arms. The stiffness matrix enable to obtain the 
mobile platform displacement when an external wrench is applied. The procedure was used to map the mobile platform 
displacement for different configurations of the 6-RSS parallel structure.  The used methodology can be applied to 
analyze the stiffness of other robots structures. Future works concern now in improving the stiffness model considering 
the joints and experimental test with the prototype. 
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