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Abstract. This paper presents a hybrid parallel genetic algorithm for global minimum search and analyses its efficiency when applied to the electrical impedance tomography (EIT) problem. The hybrid model considered combines features of both island and cellular models. The hybrid model has subpopulations that may exchange information, according to various patterns, by allowing some individuals to migrate from one subpopulation to another. The individuals are arranged according to a 2D grid and simultaneously evaluated whereas selection and reproduction take place locally within a small neighborhood. Concerning the application, the functional approach treats the numerical reconstruction of EIT as a global minimization problem in which the objective function is an error functional and the global minimum corresponds to the sought image. The major difficulty lies in the nonlinear and ill-posed nature of the problem, which reflects in the minimization hyper-surface topology, demanding a specialized optimization method (for example, parallel genetic algorithm) to escape from local minima and almost plane regions (plateaus). The results show that the hybrid parallel genetic algorithm accelerates the execution time of the method allowing for the search of the solution, dissipates a large number of solutions near the attraction region of global minimum and increases the convergence of the algorithm to the global minimum, when compared with the usual models of parallel genetic algorithm.
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1. INTRODUCTION
Electrical impedance tomography (EIT) consists in determining the electric contrast distribution in the interior of a sensing volume by applying an excitation profile on the external surface and measuring the corresponding response on the same surface. The data obtained from this procedure are supplied to a computer with specific software that reconstructs the original image.

According to the theory of inverse problems, the functional approach treats the numerical reconstruction of EIT as a global minimization problem in which the fitness function is an error functional that expresses the difference between actual measurements experimentally obtained and the approximated measurements numerically obtained from an approximated contrast distribution. The global minimum of the error functional corresponds to the sought image. However, the powerful optimization methods available, as the genetic algorithms (GA), are not capable of obtaining the sought image in viable time. This is due to the nonlinear and ill-posed nature of the problem, which reflects in the minimization hyper-surface topology, avoiding the convergence of the algorithm for the exact solution in the presence of local minima, saddle points, boundary minima and almost plane regions (plateaus), and also, because of the long time of the evaluation of the fitness function. Thus, the search for high performance (obtaining image in real time) is the principal factor that justifies the need for the parallel processing.
The parallel processing suggests that a task should be divided and accomplished by several elements of the processing, which can communicate simultaneously, searching for efficiency through the breaking of the sequential execution model of the instructions flow, as suggested by von Neumann. The von Neumann model is constituted essentially by the processor, memory and I/O devices (input and output). However, parallel forms of solving differential equations have already been suggested by von Neumann in his articles [(Duncan, 1990) and (Flynn, 1972)]. The appearance of the ILLIAC IV computer with 64 processors built at the University of Illinois in 1971 was the initial mark of the parallel processing (Navaux, 1989).
Nowadays, parallel computing is a key technology of high-performance networked systems. The unique power of GAs shows up with parallel computers. Parallel and distributed GAs are easy to be implemented and promise substantial gains in performance. An example is the parallel genetic algorithm (PGA) proposed by Mühlenbein et al.  (Mühlenbein et al., 1987). The research indicates that parallel searches with information exchange between the searches are often better than a single search. Thus, the PGA combines the hardware speed of parallel processors and the software speed of intelligent parallel searching.
In the current literature, PGA implementations can be separated into three categories: master-slave, island and cellular models. The master-slave model is the simplest of the PGAs, where fitness evaluations are distributed among multiple processors (slaves) and computed in a parallel form. In the master, selection, crossover and mutation operations are made. This method does not affect the general behavior of the GA used. As more slaves are considered, the communications cost increases, however, the computational cost for each slave decreases. Cantú-Paz (Cantú-Paz, 1997) investigated an optimal number of slaves that minimize the total execution time. Considering the island model, some first versions and relevant studies can be found in the literature [(Cohoon et al., 1987), (Tanese, 1987), (Tanese, 1989), (Mühlenbein et al., 1991) and (Belding, 1995)]. In this model, the whole population is divided into multiple subpopulations that evolve on their own isolated from each other most of the time. Each processor handles a subpopulation by itself. The subpopulations communicate through certain migrant individuals that are transferred from one subpopulation to another periodically (migration). Selection and crossover operations occur within a small neighborhood. The island model is more than a hardware accelerator. The behavioral differences between the serial GA permit obtaining advantages in many situations, inherently not only to parallelization, but also to the algorithm. For the cellular model, some first versions and relevant contributions can be found in the literature [(Gorges-Schleuter, 1989), (Mühlenbein, 1989), (Manderick and Spiessen, 1989), (Mühlenbein et al., 1991), (Baluja, 1993) and (Whitley, 1993)].  In this model, the population is divided into many small neighborhoods. Usually each processor controls one or a small amount of individuals and there is intensive communication between neighborhoods.  The individuals belonging to the whole population are distributed topologically in a grid (one-, two- or three-dimensional) and are restricted to reproduce in a small environment of their location. Selection and mating are performed only with neighbors. As a consequence of local selection, the selection pressure decreases tending toward a deeper exploration of the search space. The neighborhoods overlap and good individuals may disseminate across the whole population. Some papers compare the performance of this model with the master-slave and island models [(Gordon and Whitley, 1993), (Belding, 1995)].
According to this context, the objectives of this work are aimed at both parallel computation and the models of PGAs to accelerate the search for the image in reasonable time. The proposal of the hybrid model is to combine the features of the island and cellular models, i.e., to maintain the diversity of the population during the convergence process by exchanging information between subpopulations and to dissipate good solutions for the whole population through the interaction among the neighborhoods. Those characteristics seem to be promising since the individuals will be divided into geographically separated subpopulations and the genetics operator will be applied within a small neighborhood. Thus, good solutions can be dissipated between subpopulations, consequently accelerating the convergence of the algorithm. Using three computers linked in parallel, the master-slave, island, cellular and a hybrid models were tested. The hybrid algorithm obtained the best performance compared with the other models regarding the convergence of the algorithm to the exact solution (sought image).
2. Statement of the Problem
The governing non-dimensional equation of an electrical impedance tomography problem can be derived from Maxwell equations according to the following
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where ( and ( are 3D scalar functions that represent, respectively, the electric field and the medium’s contrast (permittivity, conductivity or permeability) and ( represents the domain problem or the sensing volume.
The interaction between ( and the exterior occurs through boundary (( and is defined by electrical excitation and response
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In Equations (2) and (3), (exc denotes the excitation voltage profile (mathematically modeled by Dirichlet boundary conditions or essential boundary conditions) and Q, is the measured profile (Neumann boundary conditions or natural boundary conditions).
The sough image σ cannot be accessed directly through formulation (Eq. (1) – (3)), as both σ and ( are unknown. A way to obtain σ is by treating the problem as an inverse problem, constructing an error functional that compares measurements obtained from an experimental model and a mathematical model. The first model corresponds to a collection of measurements, Qactual, which is the resultant external flux of the experimental assembly that contains the actual σ (σactual). The second model consists in calculating Qapprox (the resultant external flux of the numerical model) by applying approximated values of σ, σactual, in formulation.
Therefore, the error functional is defined as
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The error functional e defined in Eq. (4) depends, firstly, on the contrast σ and the excitation profile (exc. Since the excitation profile is imposed externally, e can be expressed as 
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By adjusting (approx to (actual within an acceptable error level, it is possible to conclude that
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or also, that (actual indicates the global minimum of e. Thus, the reconstruction of the contrast (actual from excitations and responses on the external boundary (Ω, or more exactly, the solution of the inverse problem is obtained minimizing the error functional, so that
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The Euler-Lagrange equations associated with Eq. (6) became extremely complex, due to the difficulty of representing a direct relation of the contrast ( and the error functional e. Thus, it is convenient to profile the variational problem through the following equation
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In Equation (7), ψk(x, y, z) are base functions conveniently chosen and (k is the respective decomposition coefficients. Therefore, when optimizing e in the variables (k restricted to an interval of values defined with regard to the contrast of the multiphase-flow components, the solution of Eq. (6) can be obtained.

3. genetic algorithms
A Genetic Algorithm (GA) is a stochastic search method based on the biological evolution theory of Charles Darwin [(Holland, 1975), (Goldberg, 1989)]. More specifically, solution candidates (chromosomes) of the optimization problem compete among themselves to transmit their characteristics to new generations of chromosomes from previous generations (reproduction). The best fitted chromosomes (those with the lowest values for the optimization function, considering a minimization problem) have better chances of reproducing (selection), transmitting good characteristics to the new generations. Besides, random changes occurring at a specific probability (mutation) affect reproduction, providing the emergence of new characteristics that can be explored through the survival or decline of the mutant chromosomes. The application of these concepts to the EIT problem requires a special formalism which will be described in the sequence.
Let the error function defined in Eq. (4) be in a discretization of Eqs. (1), (2) and (3), in which (k with 
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 are the expansion coefficients of the contrast and NE represents the total number of terms according to Eq. (7), i.e.
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In other words, each (k is related to an element in the discretization of Eq. (1), in finite elements, and corresponds to genes of a particular chromosome (or individual). In the same way, Qactual and Qapprox are both discretized and calculated only in the NB elements of the boundary
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Then, the error functional defined in Eq. (4) becomes a discrete operator
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which defines the fitness function of the GA that must be minimized from successive refinements of the contrast vector.
With regard to the coding, the genes can be represented in binary-coding, as proposed by Holland (Holland, 1975), or in floating point-coding, as employed by Michalewicz et al. (Michalewicz et al., 1994) and Cho et al. (Cho et al., 2001) for dealing with EIT problems. Binary-coding was adopted in this work, once the two-phase flow problem can be treated as a combinatorial optimization problem.
Considering a set of POP individuals, it is possible to define a generation
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The reproduction process to generate the successor generations can be accomplished by combining the chromosomes of two or more parents, according to specific rules (for details, see (Radicliffe, 1990), (Spears and De Jong, 1991), (Davis, 1991), (Mühlenbein and Schlierkamp-Voosen, 1993) and (Gen and Cheng, 1997)). In this work, the two-point crossover was adopted.
Crossover usually provides GA with a feature of local random search converging for the solution, however, in a slow and gradual way. Besides, the convergence for the exact solution can imply the presence of pathologies as multiple minima, saddle points or almost plane areas surrounding the area of attraction of the global minimum.

Mutation can prevent the premature convergence of the algorithm to a local minimum, which is not the global one, once it provides the appearance of the features absent in the initial generators, preventing the population of chromosomes from becoming too similar to each other, which slows or even stops evolution. Besides, mutation guarantees that all the search space can be explored, therefore, reaching the exact solution is theoretically possible, independently of the initial population or the pathology of the problem.
According to the binary coding, a common method, which was adopted in this work, involves generating a random number for each gene of the chromosome. This random number shows whether or not a particular gene will be modified (for details, see (Michalewicz et al., 1994), (Cho et al., 2001)).
The natural introduction of additional restrictions, representing information known a priori, is an extremely important advantage of GAs, concerning the solution of inverse ill-posed problems. Several strategies were proposed to manipulate restrictions with GAs, such as rejection, repairing, modifying genetic operators and penalty strategies (Gen and Cheng, 1997).
Concerning the introduction of restrictions derived from a priori physical knowledge of the EIT problem, it is possible to use, for instance, the signals derived from direct imaging probe (Seleghim and Hervieu, 1998) and, besides the initial images, to calculate the instantaneous volumetric void fraction of the flow 
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where 
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 denotes the calibration model that, for simplicity, can be arbitrated 
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The restriction operators should assure that all the descendents satisfy, at least approximately, Eqs. (13) and (14). Thus, a possible way of implementation is by rejecting the unviable individuals, which is computationally inefficient, or to modify both reproduction and mutation, generating only viable descendents, which is not always feasible (for details, see (Davis, 1991), (Gen and Cheng, 1997) and (Rolnik and Seleghim, 2006)). In this work, the strategy adopted was the penalization of the fitness function, including, as a priori information, the instantaneous void fraction and the symmetry coefficient of the flow, i.e.,
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Once the descendents are generated, the best individuals are selected to reproduce in the next generation (elitism). Different selection strategies are described in the literature [(Holland, 1975), (Goldberg, 1989), (Michalewicz, 1996) and (Mitchell, 1996)], each one with possible variations depending on specific mathematical rules or criteria of computational performance. The most common strategy, called roulette wheel or proportional selection, consists in assigning selection probabilities according to the fitness function of individuals, so that the best ones have greater chances of being selected.
4. Parallel GENETIC ALGORITHMS
The time savings obtained by distributing the computational effort and the benefits from a parallel setting from an algorithmic point of view, in analogy to the natural parallel evolution of spatially distributed populations, are two main reasons for parallelizing a genetic algorithm.
There are three main parallel genetic algorithm models: global parallelization model, coarse-grained model and fine-grained model [(Adamidis, 1994), (Cantú-Paz and Goldberg, 1999) and (Gordon and Whitley, 1993)].
The global parallelization model, the coarse-grained model and the fine-grained model adopted in this work are, respectively, the master-slave model, the island model and the cellular model.
The master-slave model is characterized by executing the evaluation routine of the individuals in a parallel architecture, i.e., the individuals are divided evenly through different processors to be evaluated. The master process manages the execution of the GA. The master distributes p individuals to be evaluated in n slave processes and the slave processes send the results back to the master. The newly evaluated individuals can be inserted randomly, replacing the worst or competing against others. Then, the master applies the genetic operators to produce the next generations (for details, see (Cantú-Paz, 1997)).
The island model features geographically separated subpopulations that may exchange information according to various patterns by allowing some individuals to migrate from one subpopulation to another. The migration operator is added to the standard sequential GA, which is executed within each subpopulation. The exchange of individuals is produced with low frequency. The migration of individuals from one subpopulation to another is controlled by the topology that defines the connectivity between the subpopulations, a migrate rate controlling the number of individuals to migrate and a migration interval that affects the frequency of the migrations (for details, see (Cohoon et al., 1997), (Tomassini, 1999)).
The cellular model is characterized by arranging the individuals according to a large toroidal one- or two-dimensional grid, with each individual in a grid location. The mesh is often a 2D rectangular grid, as in many massively parallel computers, the processing units are connected using this topology. The individuals are simultaneously evaluated whereas selection and reproduction take place locally within a small neighborhood. A critical parameter is the ratio between the radius of the neighborhood and the size of the underlying grid. The main parameters of the model are the population size, population structure, mating strategies, neighborhood size and shapes (for details, see (Cantú-Paz, 1997), (Tomassini, 1999)).
4.1. Hybrid Parallel Genetic Algorithm

The hybrid model considered in this work combines features of both island and cellular models. More specifically, it has subpopulations that may exchange information according to various patterns by allowing some individuals to migrate from one subpopulation to another. The individuals are arranged according to a two-dimensional grid and simultaneously evaluated whereas selection and reproduction take place locally within a small neighborhood. The following figure depicts this architecture.

[image: image22.wmf]
Figure 1. A schematic view of the hybrid model.
The above procedure is formalized in Fig. 2.

[image: image23]
Figure 2. Pseudo-code of the hybrid model.
5. NUMERICAL SIMULATIONS

The tests with parallel genetic algorithms were performed in a cluster composed of three processors. Linux is the operating system used in the distribution Mandrake 10.1 and the library of subroutines for parallel processing is MPICH version 1.2.5.2 for C and Fortran, a library of Message Passing Interface (MPI) developed by the Mathematics and Computer Sciences (MCS) Division.

5.1. Case Study

For test purposes, a two-dimensional domain was used, i.e., a square of unitary sides with 16 electrodes placed evenly in the boundary, according to Fig. 3a. A discrete version of the governing Eq. (1) can be derived in Cartesian coordinates, according to a finite-element scheme. Initially, Dirichlet conditions (imposed tensions) were assumed in all sides of the square. The chosen triangular excitation profile, which simulates the tension of 10V in an electrode, located in the right corner of the superior edge of the square and gradually varying until a minimum value (0V) in the electrode diametrically opposite to it can be observed in Fig. 3b.

[image: image24]
Figure 3. (a) Representation of the sensing volume with inclusions; (b) Boundary conditions that simulate the triangular excitation profile.
Figure 3 also shows the real contrast distribution (actual inside the domain. The domain was discretized in a mesh of 
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 for inclusion 4. The remaining of the domain is defined by value σext. The aim of the EIT technique is to determine the contrast distribution. The numeric values of σ try to simulate the dielectric feature of a water flow (σext = 80) with inclusions of air (σint = 1).
In the direct problem, the electric potential is known on the four sides of the square where the Dirichlet condition is applied, generating a total of 64 unknowns. Nevertheless in the inverse problem, σ should be established in all the 162 elements. The choice for this relatively small domain is justified due to the large size of the space of the solutions. For instance, there are 
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 possible solutions in the discrete problem (σ = σint or σ = σext), not allowing for an exhausting search. If a calculation of fitness function takes one second, then an exhausting search will take approximately 
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For a visualization of the results, the 162 unknowns were placed in a vector 
[image: image33.wmf](

)

12162

,,...,

=

r

ssss

 and corresponded to the horizontal axis in the following graph. The vertical axis denotes σ in the discrete elements. The correct solution for the test problem can be observed in the following graph.
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Figure 4. Exact solution for the test problem.
5.2. Results

The tests aimed to compare the performance of the PGAs. Specifically, the parameters adopted were: initial population with one hundred individuals, two-point crossover with crossover rate of sixty percent, mutation rate of six percent for each gene of the chromosome. The individuals with low values of fitness function were selected to the next generation and the ten best individuals migrated every twenty generations. Twenty tests were executed for each PGA model, totalizing eighty tests. The following table shows the results.
Table 1. Comparison of the performance among the parallel genetic algorithms.
	
	Master-slave
	Island
	Cellular
	Hybrid

	Average Number of  fitness evaluations
	299177
	802210
	409489
	731903

	Average Processing Time (Seconds)
	76.0
	147.4
	72.00
	129.6

	Convergence Percentage restricted to 5000 generations
	25 %
	55 %
	50 %
	70 %

	Minimum Number of generations
	1453
	240
	262
	160

	Maximum Number of generations
	4050
	4100
	3381
	2540


According to Tab. 1, the island model required the highest number of fitness evaluations to converge whereas the master-slave model converged in the lowest number of evaluations. With regard to average processing time, the island model showed the worst performance. Contrarily to what was initially expected for the master-slave model, the cellular model presented the best performance regarding average processing time. These results confirm that the processing time depends on the number of evaluations of the fitness function as well as on the amount of communication among the processors. Considering the convergence percentage restricted to five thousand generations, the results showed a large variation from 25% for the master-slave model to 70% for the hybrid model, confirming that the hybrid model combines the qualities of both island and cellular models. According to the minimum and maximum number of generations, the master-slave model showed the worst performance, therefore it is not a reasonable choice for the type of inverse problem studied in this work. The hybrid model showed the best results.

6. conclusions
The hybrid parallel genetic algorithm presented in this paper for global minimum search showed to be efficient when applied to the EIT problem. By combining features of both island and cellular models, the hybrid model allowed for the solution search in a minor processing time (129.6s), in comparison with the processing time of the island model (147.4s). Moreover, it distributed a large number of solutions near the attraction region of global minimum and, consequently, increased the convergence percentage (restricted to five thousand generations) of the algorithm (70%), when compared with the convergence percentage of the other models (for instance, 50% for the cellular model and only 25% for the master-slave). Thus, the hybrid model is a sensible choice for the type of inverse problem studied in this work, i.e., hybrid model is a very promising technique for the global minimum search (sought image).
Future works should introduce a regularization strategy of the error function and insert a local search strategy in the PGA. 
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initialize P subpopulations of size N each


for each cell i in the grid


    generate a random individual i


end for


generation number ( 1


while termination condition is not satisfied do


   for each subpopulation do in parallel


      evaluate and select individuals by fitness


      if generation number mod frequency = 0 then


         send K < N best individuals to a neighboring subpopulation


         receive K individuals from a neighboring subpopulation


         replace K individuals in the subpopulation


      end if      


      for each cell i do


         select a neighboring individual k


         produce offspring from i and k	


         assign one of the offsprings to i


         mutate i with a probability pmut


      end for


   end parallel for


   generation number ( generation number + 1


end while
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