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Abstract. The present work describes a numerical investigation of boundary conditions for computational 

aeroacoustics (CAA) problems. Such approach is crucial for developing aeroacoustics codes. Initially an overview of 

boundary conditions suited for CAA is presented in order to introduce the numerical activities performed herein.  

The Linearized Euler Equations (LEE) have been discretized with optimized high order finite difference schemes taking 

into account usual conditions of consistency, stability and convergence. The spatial discretization scheme is known as 

DRP (Dispersion-Relation-Preserving) which seems to be suitable for aeroacoustics simulations. To advance the 

solution in time, a 3rd order Runge-Kutta scheme is applied. In order to validate the numerical scheme, an initial 

disturbance is employed, which is then propagated in a 2D Cartesian mesh. At the boundaries of the computational 

domain the boundary conditions equations should permit that the waves leave the domain without reflection. In this 

work boundary conditions of Radiation and Outflow type have been used. The numerical scheme is deeply discussed 

shedding light to the relevant parameters which are necessary to achieve a good aeroacoustic simulation. The 

numerical results generated in this work are compared with the exact analytical solutions showing a good agreement.  
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1. Introduction 
 

It’s well known that in Computational Fluid Dynamics (CFD), as traditionally is performed, the governing 

equations are solved with spatial and temporal numerical schemes in order to represent the derivatives. Besides that, 

additional equations arise to describe boundary conditions since the solution is obtained in a limited fluid domain. This 

is not different in the new area of Computational Aeroacoustics (CAA), however with more severe restrictions when 

dealing with boundary conditions. Indeed, at the boundaries of the limited acoustic domain a properly set of boundary 

conditions should take place in order to allow the radiated sound waves and the convected vorticity and entropy waves 

to leave the computational domain without reflection. In the aeroacoustics solution, such kind of reflecting waves, 

inside the domain, leads to numerical instabilities which surely will jeopardize the final results. 

As stated by Tam (1997), in CAA, numerical boundary conditions are often developed for idealized model 

problems. In practical applications, they must be modified or extended to account for the presence of a nonuniforrn and 

sometimes unknown mean flow. In this way, many authors devoted special attention for understanding and to modify 

boundary conditions for aeroacoustics purposes.  

In the literature, some authors prefer to classify and to group boundaries conditions for CAA. One of these 

classifications is also presented by Tam (1997) as: 

 

(1) Radiation boundary conditions. 

(2) Outflow boundary conditions. 

(3) Wall boundary conditions. 

(4) Impedance boundary conditions. 

(5) Radiation/outflow boundary conditions with incoming acoustics or vorticity waves 

(6) Radiation boundary conditions for ducted environments. 

 

It’s also clear that the use of one type of boundary conditions is strictly related to the numerical simulation pursued. 

In this work the focus of the discussion will be on boundary conditions of type (5) since it appears to be unique to CAA 

computations. Details about the other boundary conditions can be found in the papers of Tam & Dong (1994), 

Ozyoruk & Long (1996), Givoli (1991) among others.  

When dealing with boundary conditions of radiation and outflow types, it’s important to keep in mind for what 

purpose they have been derived for. In summary, these boundary conditions were created based on asymptotic solutions 

of the Linearized Euler Equations (LEE) by using Fourier-Laplace transforms as proposed by Tam & Webb (1993). 

Such approach was sought because the LEE, when applied for aeroacoustics codes, could support three types of 

disturbances been propagated through the computational domain. They are the acoustic waves, the vorticity waves and 



the entropy waves. Obviously, for aeroacoustics codes, the most important wave pattern is the acoustic. These acoustic 

waves propagate at sound speed relative to the mean flow and must leave any boundary of the computational domain 

without reflections. However, as said before, vorticity and entropy waves are commonly present in a CFD calculation. 

The vorticity as well as the entropy waves are frozen patterns advected downstream by the mean flow and must also 

leave an outflow boundary of the computational domain without spurious reflexions. Because of the presence of the 

three types of wave disturbances, each having distinct propagation characteristics, the outgoing disturbances present at 

outflow boundaries could be very different. Depending on the application, boundary conditions for aeroacoustics should 

deal not only with acoustic waves leaving the domain, but also with vorticity and entropy waves or any combination 

among them.  

In this field was natural, for some researches, to develop asymptotic or characteristics solutions for the LEE in order 

to construct a set of boundary conditions. These solutions are essentially applied for farfield sound evaluations, where 

the sources are sufficiently far from receivers. Radiation boundary conditions were derived to deal only with acoustic 

waves out coming from the noise source. On the other hand, Outflow boundary conditions could deal not only with 

traveling acoustic waves but also with vorticity and entropy waves.  

The present paper is devoted to study the numerical propagation of an acoustic pulse throughout a 2D (two-

dimensional) computational domain. The main focus was given to the numerical investigation of boundary conditions 

and its effects on the final solution. To accomplish the task of evacuating the acoustic pulse through the boundaries of 

the computational domain, Radiation and Outflow boundary conditions were implemented and tested. The propagation 

and evacuation of the acoustic pulse is finally validated against the analytical solution for LEE. 

In the following two sections, it’s presented a summary of radiation and outflow boundary conditions without going 

to deep details on its construction. Such details can be found in the work of Tam & Webb (1993). A general description 

about the numerical approach for the pulse propagation is given in section 4. The review of the numerical scheme used 

in the 2D simulations is provided in section 5. Finally, the numerical results are shown in section 6.  

 

2. Radiation Boundary Conditions 
 

Essentially, Radiation boundary conditions were based on farfield asymptotic solutions for the Linearized Euler 

Equations (LEE), as presented by investigators like Bayliss & Turkel (1982) and summarized in Tam & Webb (1993). 

In this paper, it will not be presented the mathematical construction of these boundary conditions, so the reader should 

consult references given above. 

At the boundaries where there is only outgoing acoustic waves the solution is given by the equation (1), in polar 

coordinates: 
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These are the radiation boundary conditions for two-dimensional time domain computations. Where (r,θ) are polar 

coordinates centered near the middle of the computation domain. 

Writing (1) in Cartesian coordinates: 
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The temporal derivatives of these equations should have the same discretization of the main LEE equations taken 

into the interior points as they are consecutively time advanced with the interior points. The discretization for the spatial 

derivatives is slightly different, since additional points in the boundary are needed (see section 4). 

 

3. Outflow Boundary Conditions 
 

As they have been created, outflow boundary conditions were also based on asymptotic solutions for the (LEE). 

In Cartesian coordinates: 
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The equations above apply at the boundaries where outgoing disturbances consist of a combination of acoustic, 

vorticity and entropy waves. 

 

4. Propagation of an Acoustic Pulse 
 

In order to evaluate the numerical propagation of an acoustic pulse, the Linearized Euler Equations (LEE) has been 

solved in a square 2D computational domain. At the time t = 0 an acoustic pulse is generated at the center of the domain 

and then consecutively propagated through it until reaching the boundaries. At the boundaries points of the 

computational domain, Radiation and Outflow equations, as described in sections 2 and 3, have been solved in order to 

allow the acoustic waves to leave the domain. 

Two test conditions were analyzed based on the Mach number of the mean flow. These two cases provided 

conditions to check the effectiveness of Radiation and Outflow boundary conditions. Figure 1(a) and (b) shows a 

description of the test cases.  

 

 
 (a) No mean Flow (only acoustic waves) (b) Mean Flow (acoustic + entropy waves) 

 

Figure 1 - Test cases to check Radiation and Outflow BC effectiveness. 
 



In the first case - case (A) - there is no uniform flow u0 and a0. An unique outgoing acoustic pulse in the center of 

the domain is supposed to be propagated in all directions reaching all the four boundaries at the same computational 

time. In this case, all the four boundaries (top, bottom, left and right) were treated with both Radiation and Outflow 

boundaries conditions one at the time of simulation. The numerical results for such simulations were compared against 

each other and against the analytical solution for the LEE. 

On the other hand, in the case (B) there is an uniform flow of velocity u0 and a0 coming to the left that reaches the 

pressure and entropy pulses. The entropy pulse is released at the same time and at a distance of about 1/3 of the length 

of the computational domain. This is done in order to force both perturbations to be at same time leaving the domain 

through the right boundary as they are propagated. As the acoustic pulse expands radially, it is advected to the right 

until reaching the right boundary. During its expansion at the sound speed, the acoustic pulse reaches the entropy pulse 

which is being only advected to the right with the mean flow velocity u0. Thus, at the right boundary, the Radiation and 

Outflow boundary conditions should evacuate not only an acoustic pulse but also an entropy one. To simulate case (B), 

at the top, bottom and left boundaries, the Radiation boundary condition was imposed. The right boundary was switched 

between Radiation and Outflow boundary conditions.  

It’s important to emphasize that the left boundary could also be treated with Outflow boundary conditions, however 

considerations about the incoming velocity should have been taken – Tam (1997). In this work, such approach was not 

considered.  

The pressure and entropy pulses were given by a Gaussian distribution:  
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The following parameters were applied: 

Pressure pulse amplitude ε1 = 0.01 

Half-width b = 3.0 

Entropy pulse amplitude ε2 = 0.001 

Half-width b = 5.0 

 

According to Roeck (2004) the Gaussian function is used to evaluate the general dispersion and dissipation 

properties and the stability ranges of the scheme. 

The computation domain is filled out with 200 x 200 uniform meshes with the following global parameters: 

L / ∆x  =  200  

∆t =  0.05s 

∆x = ∆y =  1 

 

Figure 2 depicts details about the computational domain and the numerical parameters used in this simulation. The 

grey zone shown is the region of extra points, normally called “ghost points”, for evaluating the radiation and outflow 

boundary equations. More details about this procedure are given in the next section. 

 

 
Figure 2 - Computational domain and numerical parameters. 

 

In order to validate the propagation of an acoustic pulse in a two dimensional domain, the analytical solution for 

LEE was numerically implemented. The complete description of the analytical solution can also be found in the work of 

Tam & Webb (1993).  

Inner region 

DRP Scheme 

Ghost Points 

BC Equations 
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4.1. Review of Numerical Scheme 
 

The complete validation of the numerical scheme employed in this work was carried out with 1D solution of a 

propagating pulse, according to Almeida & Souza (2006). In this section, it will be provided just a summary about the 

spatial and temporal discretization used on the numerical implementation. 

For the temporal discretization, a 3rd order Runge Kutta scheme was applied, according to Williamson (1980). This 

scheme consists of 3 sub-steps for each time step ∆t, with different coefficients γ and ζ. Despite questions about 

instabilities and numerical dispersion, this scheme performed very well when compared with other schemes Dispersion-

optimized – see Almeida & Souza (2006). 

Thus, the following equation applies to advance a general φ variable: 
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where the coefficients γ and ζ are defined according to Table 1: 

 

Table 1 - 3
rd

 Order Runge Kutta Coefficients – Williamson (1980). 

i γi ζi 

1 8/15 0 

2 5/12 -17/60 

3 3/4 -5/12 

 

For the spatial discretization, the low-dispersion and low-dissipation numerical schemes also known as DRP 

(Dispersion-relation-preserving) were employed. This scheme seems to be very suitable for the propagation of an 

acoustic pulse. The complete description of optimized spatial discretization for the Dispersion-Relation-Preserving 

(DRP) schemes is given in the work of Tam & Webb (1993b). 

The coefficients of the 7-point central difference scheme (DRP) for approximating spatial derivatives used in this 

work are: 

 

7-point central difference scheme (DRP): 
 

a0 = 0 

 

a1 = -a1 =  0.77088238051822552 

 

a2 = -a2 = -0.166705904414580469 

 

a3 = -a3 =  0.02084314277031176 

 

This scheme was applied to all internal points in the computational domain (see Figure 2). However, the use of such 

a scheme gives rise to ghost points at the boundary of the computational domain. Figure 3 shows the interface region 

between the inner domain, where DRP scheme is applied, and the region where ghost points must be applied in order to 

evaluate the BC equations. 

 
Figure 3 - Interface between inner and ghost points 

 

For the ghost points, a 7-point backward difference scheme (DRP) was employed in order to approximate the 

spatial derivatives. The coefficients used for this scheme are given below, according to the stencil applied in the 3 ghost 

points. 

 

 



0-6 stencil applied to n-2 points: 

 
a-2 =  0.049041958 

a-1 =  -0.468840357 

a0 =  -0.474760914 

a1 =  1.273274737 

a2 =  -0.518484526 

a5 =  0.166138533 

a6 =  -0.026369431 

 

where n is the total number of points in a coordinate direction. 

 

1-5 stencil applied to n-1 points: 
 
a-1 =  -0.209337622 

a0 =  -1.084875676 

a1 =  2.147776050 

a2 =  -1.388928322 

a3 =  0.768949766 

a4 =  -0.28181465 

a5 =  0.048230454 

 

0-6 stencil applied to n points: 

 
a0 =  -2.192280339 

a1 =  4.748611401 

a2 =  -5.108851915 

a3 =  4.461567104 

a4 =  -2.833498741 

a5 =  1.128328861 

a6 =  -0.203876371 

 

5. Numerical Results 
 

This section provides the numerical results of the present work. The results are shown separately for the cases (A) 

and (B), in order to check the effectiveness of Radiation and Outflow boundary conditions in a pulse propagation 

problem under the effects of a mean flow. 

 

5.1. Case (A) – No mean flow 
 

As shown in Figure 1(a), the Case (A) consists only on propagating and evacuating an acoustic wave through the 

2D domain. In this case, for all boundaries, both Radiation and Outflow boundary conditions were implemented and 

tested separately. The analytical solution for the LEE is used to validate the numerical solutions.  

Figure 4(a) and (b) shows the acoustic pulse leaving the computational domain after 2000 time steps (t = 100) under 

the effects of Radiation and Outflow boundary conditions, respectively. In both contour plots there are no noticeable 

reflections of the pulse in the boundaries. Both solutions are identical and the boundary conditions imposed in these 

regions appear to be very effective. The solution was run until 3200 time steps where the acoustic pulse is completely 

evacuated from the domain. Again, there were not noticeable reflections during the simulation process from 2000 up to 

3200 time steps. 

More detailed information about the wave’s propagation could be considered when looking to the waveform. 

Figure 5 shows the pressure waveform along the x axis after 2000 time steps. In figure 5(a) are compared the results 

obtained with Radiation and Outflow boundary conditions. On the other hand, figure 5(b) presents the comparison 

between the results obtained with Radiation boundary condition and the analytical solution for LEE. As said before, in 

figure 5(a) both solutions are quite identical and no wiggles are observed in the waveform while it’s leaving the 

computational domain. However, in Figure 5(b) it’s possible to observe little differences in the waveform, but still no 

reflections are noticeable. These small differences are attributed to the numerical scheme (spatial and temporal 

discretization) employed in this work and not really to the boundary conditions. In summary, the numerical solution has 

a good agreement with the exact solution of the linearized Euler equations.  
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 (a) Radiation BC  (b) Outflow BC 

Figure 4 – Pressure contours at 2000 time steps – Comparison between Radiation and Outflow BC’s. 

 

 
 (a) Radiation vs Outflow BC  (b) Radiation vs Analytical 

Figure 5 – Pressure waveform along the centerline at 2000 time steps – Computed vs Analytical Solution for LEE. 

 

5.2. Case (B) – Effect of mean flow 
 

According to Figure 1(b), the Case (B) consists on propagating and evacuating an acoustic wave through the 2D 

domain under the effects of a mean flow coming from the left side of the domain. The Mach number a0 for the incoming 

flow was adjusted to 0.5. 

For this specific case, at the top, bottom and left boundaries, the Radiation boundary conditions were used. For the 

right boundary, the effectiveness of the boundary condition was tested, changing between Radiation and Outflow. 

Again, the analytical solution for the LEE is used to validate the numerical solutions.  

In order to show the entropy pulse leaving the domain, Figure 6 displays the density contours considering a 

computational time of 1100 time steps. At this time, both acoustic and entropy pulse are caught together in the right 

boundary. Again, this is a very good test to check if the Radiation and Outflow boundary conditions could evacuate 

both disturbances without any considerable reflections. 

As can be seen in Figure 6(a) and (b) there are not noticeable reflections in the computational domain. The order of 

magnitude for reflected waves in the computational domain is much less than 1% intensity relative to peak acoustic 

disturbance and lies well within the range of accepted patterns for aeroacoustics. 

Figure 7(a) and (b) shows the comparison between computed and analytical solution for the density waveform 

distributed over the centerline (x-axis) of the computational domain considering a computational time of 1100 time 

steps. As said in the previous paragraph, the numerical results agree very well with the exact solution for the LEE, 

showing not only a good performance of the outflow and radiation boundary conditions in evacuating pressure and 

entropy disturbances, but also a good combination of the numerical scheme employed in this work.  



In addition to the results presented herein, some other tests were done decreasing the size of the computational 

domain, in order to check the effectiveness of the boundary conditions when the pulse is close to the border of the 

domain. Even for a domain with only 50 points, small and negligible reflections were observed. Also, other simulations 

were carried out using a vorticity pulse perturbation released at the same position of the entropy one. These results are 

not shown here for brevity, but the results were quite good and prove once more the good applicability of the numerical 

scheme for aeroacoustics simulations. 

 
 (a) Radiation BC  (b) Outflow BC 

Figure 6 – Density contours at 1100 time steps - Comparison between Radiation and Outflow BC’s. 

 

 
 (a) Radiation BC  (b) Outflow BC 

Figure 7 – Density waveform along the centerline at 1100 time steps - Computed vs Analytical Solution for LEE. 

 

6. Conclusions 
 

The present work described a numerical evaluation of boundary conditions for aeroacoustics. To accomplish the 

task, spatial DRP and temporal Runge-Kutta schemes have been implemented in order to propagate pressure and 

entropy disturbances throughout a 2D (two-dimensional) domain. At the boundaries, Radiation and Outflow equations 

were used to evacuate the pulses under the effect or not of a mean flow.  

With the numerical results presented herein, was possible to identify the good effectiveness of the Radiation and 

Outflow boundary conditions. For all simulations performed with and without the presence of a mean flow, both types 

of boundary conditions were efficient in evacuating the pressure and entropy pulse perturbation with no noticeable 

reflections and instabilities in the computed waveforms. 

In order to guarantee the right judgment for the effectiveness of the boundary conditions, the exact solutions of the 

Linearized Euler Equations have been used. The computed pressure and density waveforms have been compared with 

the exact solution showing a very good agreement. 

Finally, the next step of this work will be the extension of the current numerical scheme for three dimensions.  
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