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Abstract. In the present work we report an analytical solution for the equal-channel angular pressing (ECAP) process. 

This solution is based upon the upper bound method considering nonlinear material work-hardening, the friction 

behaviour and different fillet radii located at the die intersection channels. First of all, the dependence of the ECAP 

pressing pressure and the effective plastic strain obtained for a single pass are analyzed as a function of the friction 

factor and the die fillet radii. For comparison purposes, the predictions of the present model are first compared with 

the analytical solution proposed by Eivani and Karimi Taheri [J. Mat. Proc. Tech., 182 (2007) 555]. Afterwards, 

the experimental ECAP load data obtained by Eivani and Karimi Taheri for an Al-6070 billet are compared to the 

forecasted values determined with the present model. The results point out the influence of the die fillet radii upon the 

normalized ECAP pressure, independently of the friction factor adopted. As one may expect, the most severe condition 

is achieved when either the inner and outer fillet radii are equal to zero. For a fixed inner die fillet radius value, the 

proposed solution shows a more pertinent dependence of the ECAP pressure than the solution proposed by Eivani and 

Karimi Taheri. Finally, the present model can be viewed as general since it provides more realistic results for the Al-

6090 experimental ECAP loading due to inclusion of the complete die geometrical effects on the upper bound solution 

of the normalized pressing pressure.  
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1. INTRODUCTION 

The equal channel angular pressing (ECAP) is a severe plastic deformation technique to produce bulk ultra-fine 

grained materials with improved mechanical properties, see the works of Segal (1995), Valiev et al. (2000) and most 

recently by Valiev and Langdon (2006), Zhao et al. (2006) and Zhang et al. (2007). In this technique, a well-lubricated 

billet is forced to pass through a die containing two equal cross section channels, being deformed by simple shear at the 

die channels intersection. The great advantage of the ECAP technique is related to the amount of plastic strain which 

can be continually imposed to the material after each pass through the die channels (Srinivasan, 2001).  

The macroscopic understanding of the improvement in the mechanical properties of the materials deformed by 

ECAP requires the determination of the pressing force as well as the effective strains imposed after each pass. However, 

the works that present analytical solutions including the effects of work-hardening, die geometry and friction conditions 

in the pressing force and plastic strains calculations are limited to some specific process and material parameters. The 

first work was proposed by Segal (1995), in which an expression for the effective plastic strain, εeq, based upon the 

simple shear mechanism at the die channels intersection and the pressing pressure, p, can be obtained for a single ECAP 

pass as:  
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where σy and Φ are the billet uniaxial yield stress and the die channels intersection angle, respectively. Nonetheless, 

this expression neglects either the material work-hardening, since the material behaviour is assumed as rigid-plastic, 

or the friction effects at the die-billet interface.  

 Afterwards, Iwahashi et al. (1996) suggested an improvement to the effective plastic strain calculation which takes 

also into account the outer die curvature angle β: 

 


















 +
+




 +
=

2

βΦ
cosecβ

2

βΦ
cot2

3

1
εeq  (2) 



The first analytical expression to the ECAP pressing force including the material work-hardening effect was 

proposed by Alkorta and Sevillano (2003) based upon the upper bound method together with a frictionless condition: 
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where K and n are the Hollomon strength coefficient and the hardening exponent of the billet material, respectively. 

The friction effects on the ECAP pressure were first presented by Pérez (2004 a) by using the upper bound method, 

considering also the die geometric parameters, however, for a rigid-perfectly plastic material: 
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where m, d, R, lE and lS are the Tresca friction factor, the channels width, the outer die radius, the instantaneous billet 

length at the deformation surface entry and the billet length at the deformation surface exit, respectively. 

Recently, Eivani and Karimi Taheri (2007) presented the first upper bound solution to the ECAP pressure in which 

the die geometric parameters, friction conditions and work-hardening behaviour were taking into account, defined by: 
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Although the solution proposed by Eivani and Karimi Taheri (2007) considers the effects of the rheological and 

tribological parameters upon the ECAP pressure, this is restricted to a specific die geometry composed by only one fillet 

radius placed at the die bottom channels intersection. In view of the brief review presented here above, a more flexible 

solution is needed to obtain a complete analytical approximation for the pressure and or load during the ECAP method, 

as well as for the effective plastic strains after each pass of the billet through the die channels. In this context, the 

present work aims at providing a solution which takes also into account the effects of the different fillet radii, namely, 

the inner radius and the outer radius at the die channels intersection. The general solution based upon the upper bound 

method is firstly detailed wherein the equations for the force or pressure and effective plastic strains resulting from the 

ECAP deformation technique are presented. Then, the predictions determined with this general solution are compared to 

the analytical predictions and experimental results obtained by Eivani and Karimi Taheri (2007). 

 

2. ANALYTICAL MODELING 
 

The upper bound method (Kobayashi et al., 1989) was adopted in the analytical modeling to obtain the expressions 

for the pressing force and the effective plastic strains, based on the die geometry schematically depicted in the Fig.1. 

This geometry, similar to the one proposed by Pérez (2004 b), considers different fillet radii at the die channels 

intersection. The outer fillet radius (Rext) is placed in the bottom intersection while the inner (Rint) is located in the top 

region. In this figure, a square element (abcd) in the Region I of the billet moves as a rigid body with velocity V0 

towards the Region II which begins at the inlet surface (Γi) and ends at the outlet surface (Γo). This region corresponds 

to the deformation zone wherein severe plastic strains are imposed to the billet through a pure shear deformation mode. 

As the deformed element a’b’c’d’ crosses Γo, it moves in the Region III similarly as in the Region I. Some important 

aspects inherent to the Fig.1 are the origin of the rectangular coordinate system taken in the point O with x and y axes 

positive values to the left and down, respectively. In this point also is placed the origin of the cylindrical coordinates 

system (r, θ, z). In the deformation zone it is assumed that the billet moves along circular paths with center at O. The β 

angle delimitates the Region II while δ is either the angle between Γi and the velocity vector V0 or Γo and V0 in the 

Region III. The symbol Φ represents the channels intersection angle, L is the width of the channels and γ is the amount 

of shear strain imposed to the billet at each pass through Region II. 

 



 

Figure 1. Deformation geometry of the ECAP process considered in the present work. 

 

The upper bound method is based on the virtual works principle providing a maximum value to the work rate 

dissipated on a certain surface. In plasticity problems, for instance, in metal forming analysis, this upper limit is 

achieved by considering a kinematically admissible velocity field that satisfies both incompressibility and velocity 

boundary conditions. Thus, the energy portion dissipated by the external forces is equated to that resulting from the 

plastic deformation process. According to Kobayashi et al. (1989), the upper bound method can be defined as: 
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where,  

*
iv  is a kinematically admissible velocity field; 

*
ijε&  is a strain rate field derivable from *

iv ; 

*
iv∆  is the amount of velocity discontinuity along the surface SD;  

*
ijσ  is the Cauchy stress tensor associated to the strain-rate field *

ijε& ; 

κ  is the pure shear yield stress; 

iF  are the tensile stresses present in the tensile surface SF and in the prescribed velocities surface Su.   

 According to the upper bound method, the representation of the velocity hodographs is needed to obtain the solution 

for the kinematically admissible velocity field vi*. The corresponding velocity hodographs at the ECAP die channel 

entry and exit surfaces are represented in Fig. 2. The velocity field can be defined in cylindrical coordinates (r, θ, z) 

from Fig. 2 by Vr,= 0, Vθ = V0 cosδ and Vz = 0. From this velocity field, the only nonzero strain rate is due to the shear 

strain tensor component and can be determined by (Avitzur, 1968): 
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(a) (b) 

Figure 2. Velocity hodographs in the die deformation zone: (a) entry surface and (b) exit surface. 

 

In order to establish the upper bound method, one needs to equate the external work rate to the internal work rate. 

Firstly, the external work rate is obtained by the action of the plunger on the billet, that is, 
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2
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where P and L are the ECAP pressure and the channels width respectively. On the other hand, the internal work is the 

sum of the contribution of the energy dissipated in the Regions I, II and III and at the billet-die contact surfaces, 

according to Fig.1, that is: 
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where each term is defined as follows. First of all, the energy dissipated in the deformation zone (DZ) is given by: 
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where the angle β is defined from Fig.1 by: 
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 The energy dissipated at the inlet and outlet surfaces of the deformation zone are respectively approximated by: 
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 Conversely, the energy dissipated at the contact region between the billet and the outer fillet radius is equal to: 
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where m is the friction factor, |v*Rext| is the velocity discontinuity in the deformation zone and SRext is the outer arc 

length in the Region II defined as SRext= (Rext – Rint) β. In the same way, the energy dissipated at the contact region 

between the billet and the inner fillet radius is given by: 
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where SRint is the inner arc length in the Region II defined as SRint= Rint β. 
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The energies dissipated due to the contact between the billet and the die in the regions AC and DB are given by: 






 +
====== ∫ 2

βΦ
cotVmκLδtanVκmLACVκmLSVκmdSvκmWW 0

2

0

2

0AC0

S

ACDBAC

AC

&&  (16) 

 As well, the energies due to the contact between the billet and the regions located before and after the points A and 

B respectively are given by: 
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where SA and SB are the contact area before and after the points A and B defined by product between the corresponding 

current lengths of the billet hA and hB and the die channel width L, respectively. Finally, the internal work rate after one 

single ECAP pass is obtained by the sum of Eq. (10) and Eqs. (12-18) as: 
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Then, the ECAP pressure normalized by the uniaxial yield stress σy is obtained by comparing Eqs. (8) and (19): 
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where according to the von Mises yield criterion the pure shear yield stress 3/σκ y= . Or, in terms of ECAP load P: 
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Analyzing the Eqs. (20) and (21) it is worth to note an indetermination when Rext = Rint. In the limit (Rext – Rint) → 0, 

the solutions to both ECAP normalized pressure (p) and load (P) are obtained by applying the L’Hôpital’s theorem as: 
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which can be reduced to the solution obtained by the ideal work method for the frictionless condition by setting m = 0, 

as shown by Pérez (2004 a). 

The total effective plastic strain during the ECAP process is determined by the sum of effective plastic strains in the 

deformation zone and at the entry and exit surfaces. Therefore, 
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which is corrected by the von Mises yield criterion applied to the case of pure shear where γDZ represents the shear 

strain required to deform the square element abcd to a’b’c’d’ (see Fig.1). On the other hand, the uniaxial yield stress σy 

is defined from as the mean flow stress σm adopting the Swift’s work-hardening law: 

∫ 







+==

p
eqε

0

pnp
0p

eq

my dεεεK
ε

1
σσ )(  (25) 

where ε0 is pre-strain term whereas εp
 stands for the plastic strain. 

 

 



The analytical solutions proposed in the present work were implemented in Fortran90® language. The analytical 

studies were carried out at room temperature neglecting the heating due to the friction in the billet-die contact interface. 

Furthermore, the billet material behavior is considered as isotropic described by the von Mises plasticity yield criterion. 

Firstly, the results obtained with the present model were compared to the predictions determined from the upper bound 

solution proposed by Eivani and Karimi Taheri (2007) for V0 = 0.05 mm/s, Rint = 0 mm and Rint =10 mm. Two friction 

conditions were adopted by assuming m equals to 0 and 0.17. In addition, the Rext was assumed to vary in the interval 

between 0 and10 mm together with a fixed intersection die channels angle Φ equals to 90°. In this study, the material 

adopted is an IF-steel which work-hardening behavior is described from the uniaxial tensile test by Eq. (25) with 

ε0 = 0.004852, K= 544.958 MPa and n=0.235. Finally, the experimental ECAP load data determined by Eivani and 

Karimi Taheri (2007) for an Al-6070 with ε0 = 0, K = 179.3 MPa and n = 0.26 is evaluated for β = 0
0
 and 30

0
 and 

m = 0.18. 

 

3. RESULTS AND DISCUSSION 

 

Figure 3 compares the normalized pressing pressures predicted by the present work and those from Eivani and 

Karimi Taheri (2007) for Φ = 90°as a function of the outer angle β. The material considered is the IF-steel which 

mechanical properties are defined by Eq. (25). Firstly, it is possible to note that the normalized pressure increases with 

the friction factor m for either solutions. Secondly, when β = 0 rad, i.e., for Rext = Rint 0 mm, the predictions from the 

proposed solution are identical to the solution of Eivani and Karimi Taheri (2007). Nevertheless, as Rext tends to the 

maximum value considered (10 mm), the normalized pressure determined by the present solution is higher than the 

prediction obtained with the model of Eivani and Karimi Taheri (2007), due to the positive influence of the second term 

of the shear strain calculation at the deformation zone, γDZ, see Eq. (24). Thus, the analytical model of Eivani and 

Karimi Taheri (2007) can be retrieved as a particular case of the solution proposed in the present work. Actually, 

an increase of the angle β or, equivalently, of the outer radius Rext, leads to a decrease of the shearing in the deformation 

zone and, thus, of the normalized pressure. In relation to the friction effects on the normalized pressure, one should 

observe that for m = 0.17, the normalized pressure values are practically two times higher than to the frictionless 

condition, as shown in Fig. 3(b). Clearly, this is due to dependence upon the friction factor m in the Eqs (20) and (22). 

It is worth noting that the values obtained from the model proposed by Eivani and Karimi Taheri (2007) are almost 

insensitive to the outer radius Rext. This result contradicts the expected trend where an increasing ECAP pressure might 

be obtained as the Rext value tends to zero. 
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(a) (b) 

Figure 3. Normalized pressure determined for Φ= π/2 as a function of the angle β: (a) m = 0 and (b) m = 0.17. 

 

 On the other hand, Figure 4 compares the effective plastic strain obtained as a function of the angle β for an 

intersection die channels angle Φ = 90º. For the β−values between ~ 0.3 and π/2 rad, the present model predicts smaller 

effective plastic strains than the results calculated with the solution proposed by Eivani and Karimi Taheri (2007). 

In fact, the effective strain defined by Eq. (24) has two trigonometric terms which, in turn, closely depends upon the 

angle β as depicted in Fig. 4(b).  

 

 



 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20
0 1 2 3 4 5 6 7 8 9 10

 Present work

 Eivani and Karimi Taheri (2007)

E
ff

e
ct

iv
e
 p

la
st

ic
 s

tr
a

in

ββββ (rad)

ΦΦΦΦ    = ππππ/2

R
int

 = 0.0 mm

 R
ext

 (mm)

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
0 1 2 3 4 5 6 7 8 9 10

ΦΦΦΦ    = ππππ/2

R
int

 = 0.0 mm

 R
ext

 (mm)

E
ff

ec
ti

v
e 

p
la

st
ic

 s
tr

a
in

ββββ (rad)

 Total εεεε
eq

 1
st
  term of Eq. (24)

 2
nd

 term of Eq. (24)
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Figure 4. Effective plastic strain as a function of the outer die curvature angle β or the outer fillet radius Rext: 

(a) comparison with the prediction determined with the model proposed by Eivani and Karimi Taheri (2007) and 

(b) terms of the present solution given by Eq. (24).  

 

Figure 5 presents the behavior of the normalized pressing pressure when the inner die fillet radius Rint is varied over 

a range of 0 to Rext = 10 mm together with different values of the intersection die angle Φ. The friction effects are also 

considered by adopting m equals to 0 and 0.17, Figures 5 (a) and (b) respectively. For all Φ−values, the normalized 

pressing pressure increases with the friction factor m. Moreover, it is possible to observe two fundamental aspects. 

Firstly, the highest normalized pressure values are achieved for Φ = 90
0
 independently of the adopted friction factor m. 

Actually, for fixed and different values of the inner and outer die fillet radii (Rint ≠ Rext) the β angle has a maximum 

value for Φ = 90
0
, see Eq. (11). Otherwise, a maximum of the shear strain in the deformation zone γDZ and, therefore, 

of the effective strains, as shown in Fig. (6). Secondly, all the normalized pressing pressure curves decrease with an 

increase of the inner die fillet radius, Rint, or equivalently with a decrease in the difference between the die fillet radii, 

namely, in the (Rext – Rint) value in Eq. (11). From this theoretical analysis, larger effective strains per ECAP pass, 

imposed to the billet by means of a deformation mode close to pure shear, εp
eq about to 1.15 in Fig. (6) for Φ = 90

0
, 

can be achieved when β is zero, that is, Rint = Rext. 
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Figure 5. Normalized ECAP pressure as a function of geometrical parameters: (a) m = 0 and (b) m = 0.17. 
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Figure 6. Effective plastic strains as a function of the Φ, Rint and β. 

 

Figure 7 compares the ECAP load predicted by Eqs. (21) and (23) with the experimental values measured for an   

Al-6090 alloy by Eivani and Karimi Taheri (2007) for different values of Ψ (or equivalently β) and for a constant 

friction condition. In the first case, where Ψ = β = 0º, the theoretical predictions are identical and higher than the 

experimental value. Conversely, when the outer angle Ψ (or β) is near to 30º, the ECAP load predicted by the present 

solution is closer to the experimental load than the corresponding prediction obtained with the model proposed by 

Eivani and Karimi Taheri (2007). This difference is due to the fact that the angle β is calculated as a function of the die 

geometry which includes the effects of different fillet radii, see Eq. (11). In the model developed by Eivani and Karimi 

Taheri (2007) the angle Ψ is a known constant parameter neglecting the dependence upon the die geometry. Besides, 

it should be noted that there is a coupling between the rheological material parameters, described here by an exponential 

law from the uniaxial tensile behaviour, and the tribological effects at the billet-die interfaces which are accounted for 

by means of a single parameter, namely, the friction factor m. The m-value has been taken equal to 0.18 and 

corresponds to Coulomb friction µ of about 0.10. In the ECAP process, the stress range of interest varies nearly between 

the plane-strain compression and pure shear. Hence, the choice of the effective stress-strain measures based upon the 

von Mises isotropic yield criterion should correctly describe the work-hardening behavior of the billet. For F.C.C. 

metals such as the Al-6070 alloy evaluated in the work conducted by Eivani and Karimi Taheri (2007), it is well known 

that the corresponding yield surfaces either determined experimentally or by means of polycrystalline plasticity models 

lies between the Tresca and the von Mises (Barlat, 1987). Lastly, an improved solution could be achieved by 

considering a more refined distribution of the velocity hodographs within the die deformation zone, see Fig. (2). 
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Figure 6. Predicted and measured ECAP loads obtained for an Al-6090: (a) Ψ = 0º and (b) Ψ = 30º. 

 

 

 

 



4. CONCLUSIONS 

 

From the analytical solution based upon the upper bound method proposed in this work for the ECAP process and 

the corresponding theoretical analyses, some concluding remarks can be outlined: 

1) The upper bound model proposed to approximate the ECAP pressing pressure and the resulting effective plastic 

strain may be considered as a more rigorous solution since all the contributions describing the work-rates dissipated 

along the ECAP process have been fulfilled. Also, this solution is more pertinent vis-à-vis the geometrical parameters of 

the ECAP die, namely, the consideration of either the inner and or the outer die fillet radii together with the friction and 

the work-hardening of the billet.  

2) Concerning the effects of the die fillet radii, the proposed model predicts more consistent trends for the normalized 

pressing pressure in the cases where either the outer die fillet radius Rext tends to zero or when its difference with respect 

to the inner die fillet radius, (Rext – Rint), becomes very small. 

3) The conducted theoretical analysis shows that larger effective strains per ECAP pass, εp
eq, about to 1.10 for Φ = 90

0
, 

could still be achieved with larger β angles along with a significant reduction in the normalized pressing pressure in 

comparison to sharper inner die fillet radii values. This result is very interesting since the disadvantages related to the 

increasing loads needed for the multi-pass ECAP process could be minimized by using different die geometries.  

4) The proposed model predicts more realistic ECAP loads for an Al-6070 alloy in comparison to the analytical solution 

of Eivani and Karimi Taheri (2007). This is directly associated to the rigorous upper bound solution adopted which 

considers the effects of the die geometrical parameters in the calculation of the effective plastic strain during the ECAP 

process. 
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