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Abstract. The mathematical modeling and numerical simulation of constrained dynamic systems is not an easy task 

when one must take into account the alternance between constrained and unconstrained models. The system 

investigated in this work is a simplified model for a constrained robot with a rotational joint interacting with an 

obstructing wall inserted in its workspace. This obstacle, with its own impedance, may also be thought of as an object 

a robot must handle or interact with. The constraint is introduced in the governing equations of motion via Lagrange 

multipliers and numerical integrations are performed using the fourth order Runge-Kutta. An expression for the 

reaction force between the interacting systems is derived. Some numerical simulations are presented in order to 

remark the special features of such systems.  

 

Keywords: constrained dynamics, constrained robot, mathematical modeling, Lagrange multipliers, numerical 

integration. 

 

1. INTRODUCTION  
 

The main interest nowadays on studying contact dynamics lies in the investigation of the contact instability problem 

encountered in robotic manipulators while trying to make contact with an environment, such as grasping or pushing 

against objects.  

In rigid body mechanics, a collision between two bodies is treated as instantaneous, with contact at a single point. 

Each body is assumed to exert an impulsive force on the other at the point of contact. In the absence of friction the 

impulse of this force can be easily calculated in terms of a coefficient of restitution. In the presence of friction there are 

additional difficulties in determining the impulse within the framework of rigid body dynamics (Keller, 1986).  
A good literature survey on the subject of contact dynamics can be found in (Gilardi and Sharg, 2002). A general 

overview of impact analysis and some of the most important approaches in this area can also be found in (Faik and 

Witteman, 2000).  

During contact, it is required that the robot maintains contact with the environment, and also that the impacting 

forces should not be very high. Then, the goal of any controller is to pass through this transient period successfully, and 

have the manipulator stably exerting forces on the environment (Mandal and Payandeh, 1995). 

The contact dynamics behavior of simulated robotic motion and hence the operational overall performance depends 

to a large extent on the validity and reliability of the mathematical models considered. Long-term orbital test-beds 

therefore are needed for contact dynamics model and performance improvement. This will increase the reliability of 

pre-simulations performed on ground for mission preparation. Flight opportunities for testing are very limited and, 

besides this, very expensive. 

  

2. GOVERNING EQUATIONS OF MOTION 
 

In physical terms, the system investigated here (and illustrated in Fig. 1) may represent a robot with a rotational joint 

(the rotating bar as one link of this robot); mw can be thought as an obstructing wall inserted in the robot’s workspace or 

some object this robot must handle or interact with. In this same sense, Mθ  can be thought as an external torque 

provided by a dc motor. 



According to this figure, the free end of the bar is allowed to move along the constraint represented by the mass 

named mw. All the movements occur in the horizontal plane. The system is designed in such a way that the bar can turn 

360
o
 but, in a part of its trajectory, contact with mw is allowed to occur. In the axis passing through point A 

(perpendicular to the paper sheet), Z, there is a prescribed moment, Mθ , responsible for the turning of the bar. 

 

 
 

Figure 1. Rotating constrained bar. 

 

The kinetic energy of the system shown in Fig. 1 is given by : 
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where Ib,cm represents the bar moment of inertia around its center of mass, θ represents the bar angular displacement, 

mb represents the mass of the bar, rcm represents the position vector that locates the bar center of mass and rw  represents 

the position vector that locates the center of mass of the wall. All the vectors are referenced to the inertial reference 

frame, XY. 

The vectors rcm and rw are given by: 

 

jsinθdicosθdr AcmbAcmbcm +=  (2) 

 

jr )y(d ww +=  (3) 

 

where i and j are unit vectors in the X and Y directions, respectively, and dAcmb represents the distance from A to the 

center of mass of the bar. 

Using (2) and (3), the velocities that appear in (1) are given by: 
 

jcosθθdisinθθdr AcmbAcmbcm
��� +−=  (4) 

 

w wy=r j� �  (5) 
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and, hence: 
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Therefore, the kinetic energy given by Eq. (1) can be rewritten as:  
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The Rayleigh function that accounts for dissipation of energy associated with the linear damping forces is given by 
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where cw represents the damping coefficient associated with mw. The potential energy is given by 
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where kw represents the stiffness coefficient associated with mw. The Lagrangian, L, is, therefore, given by : 
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The Lagrange’s equations, considering the constraints to the movement (Rosenberg, 1977; Clough and Penzien, 

1975), are given by    
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where FR is a vector representing the reaction force related to the interaction between the rotating bar and the 
constrained surface (mw and the compliance associated to it). The reaction force is considered in this work only through 

its normal component, 
N

F Φ∇∇∇∇ , with FN representing the amplitude of the normal force. The normal (reaction) force is 

applied in the contact point between the tip of the rotating bar and mw and is represented normal to the constarined 

surface, pointing in the direction –Y (see Fig. 1). No friction force (tangential force component) is considered. The 

absence of friction forces in this problem is an ideal assumption. This first approach must be improved in the future. In 

real applications, the absence of friction is hardly found in mechanical systems. This condition can be approximately 
obtained in a prototype of the dynamic system presented here, for instance, by the burnishing of the contacting surfaces 

(although that there will be still some neglegible friction). The vector 
fe

r  locates the free end of the bar. The quantity Φ  

represents the equation of the constrained surface given by 
 

wd y Y 0Φ = + − =                                                                                                                                                                    (14) 

 

and 
X Y

i j
∂Φ ∂Φ

Φ = +
∂ ∂

∇∇∇∇ . The position of the free end of the bar is given by 

 

jsinθicosθrfe �� +=                                                                                                                                                   (15) 

 

or  
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where �  represents the total length of the bar. The term fe∂

∂α

r
 (where θoryα w= ) represents a vector that accounts 

for the variation of the free end position related to each one of the generalized coordinates considered. This variation is 

associated with “the work developed by the constraint forces”.  

Applying Lagrange’s equations (Eq. (12) and Eq. (13)) the governing equations of motion are given by   
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The equation for the beginning of contact is given by: 

 

w
d y sinθ 0+ − =�                                                                                                                                                                     (19) 

 

Equation (17) represents the governing equation of motion for the generalized coordinate yw, and Eq. (18) represents 

the governing equation of motion for the generalized coordinate θ . Together with these equations, Eq. (19) represents 

an additional relationship between the generalized coordinates θ  and yw when contact occurs. This set provides three 

equations and three unknowns ( θ , yw and NF ) considering the constrained problem and two equations and two 

unknowns ( θ  and yw) considering the unconstrained problem (with NF 0= ).   

In contact condition, for this problem, there is the loss of one degree of freedom. In other words, one of the variables 

is dependent of the other and the constrained equation of motion can be given by: 
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It is initially assumed that e = 0 (where e is the coefficient of restitution), i.e. fully plastic impact. Separation will 

take place when the normal force is zero. Otherwise, for any other  value of the coefficient of restitution, it is possible to 

occur multiple impacts.   

 

3. THE CONTACT (NORMAL) FORCE 
 

The time behavior of the reaction force, NF , is given by: 
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It is evident that NF  depends on the impacting body velocities ( θ� ) but also on the material properties of the body 

posed as constraint (mw, kw and cw). 

Two different set of governing equations of motion must be integrated to cover all the system dynamics. One of 

these sets is always generating the states for the other. The necessity for changing from one set of governing equations 

to another represents a source of integration errors, since the integrator is faced with singularities.   

The problem presented in this paper and the procedures developed for its analysis are general and can be extended to 

many other problems.  

 
4. NUMERICAL SIMULATIONS 
 

Three different cases are considered by changing two of the system parameters. The set of parameters considered in 

each case is presented in Tab. 1.   

In all the results presented here, mw starts in the rest position. Friction forces are not considered here. Multiple 

impacts are allowed to occur. Depending on system parameters, in the same time interval and considering the same 
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excitation, a different number of colisions can be detected. In the results presented here, for example, in cases 1 and 2 

four colisions are detected while in case 3 five colisions are detected. 

The external torque, Mθ , is constant and equal to 5.0 Nm. The length of the bar is 1.0 m. The distance d (see Fig.1) 

is equal to 0.6m. 

The numerical integrator used is the fourth order Runge-Kutta with time step of 0.0001 s. 

 

Table 1. Parameters considered for the numerical simulations.  

 

Cases considered kw (kg/s
2
) cw (kg/s) mw (kg) mb (kg) 

case 1
 

50.0 10.0 2.0 2.0 

case 2
 

100.0 10.0 2.0 2.0 

case 3 100.0 20.0 2.0 2.0 
                            

The basic idea here is to compare case 1 with case 2 and case 2 with case 3. From case 1 to case 2 there is an 

increasing in the constraint stiffness and from case 2 to case 3 there is an increasing in the constraint damping. The 

following figures illustrate the results for each one of the three cases considered. 

Figure 2. Results for Case 1. 

 

As can be seen when comparing FN from Fig. 2 with FN from Fig. 3, by increasing the value of kw form 50 kg/s
2
 to 

100 kg/s
2
 the amplitude of the contact force (normal component only since friction forces are not considered here) 

increases for the first impact mainly. The same effect is observed when comparing FN from Fig. 2 with FN from Fig. 3.    

It is evident in the velocity curves for θ� and wy�  the singulatities (jumps) that takes place in the moment the bodies 

impact each other. This phenomena might be a source of integration errors. In this sense, the time step considered is of 

great importance for convergence of the solution and the results obtained. 

As shown in Figs. 2 to 4, the value of the contact force at the instant contact is stabilished (impact) is not 

necessarily the higher value for FN. As seen in Eq. 21, the contact (normal) force depends on system parameters and 

states (θ  and θ� ) and some of these parameters and all the states involved are varying with time. In this sense, it is not 

so obvious the time behaviour of this force. 

When the distance between the masses goes to zero, the masses maintain the contact for some time. As stated 

before in this same text, in the analyses developed here one considers the coefficient of restitution equal to zero. 
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Figure 3. Results for Case 2. 

Figure 4. Results for Case 3. 
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The numerical simulations show that the first impact presents the higher amplitude for FN than the subsequent ones. 

The dashed horizontal line in Fig. 1 represents the rest position of mw. The displacement of mw taken above this line 

is positive for this mass and the displacement taken below this line is negative. In case 1, mw crosses this line just once 

(Fig. 2). In case 3, this line is never crossed (Fig. 4). In case 2, this line is crossed many times (Fig. 3). When impact 

with the tip of the bar occurs, mw changes the direction of its moviment.    

The bar is pinned in point A (see Fig. 1) and, therefore, the frequency of the impacts (or the number of impacts 

released) as well as its duration is closely related to the properties of mw (including the compliance given by kw and cw).  

However, the properties of the bar, the states of both bodies and the torques involved ( Mθ ) have also some influence in 

the number of impacts. For example: considering the same time interval, if Mθ  increases the angular displacement of 

the bar increases and the number of contacts increases. By changing kw or cw, for example, one modifies the frequency 

of the unconstrained mw and, therefore, the number of times this mass is in the region into which impacts may occur. 

When the bodies separate, a different (from the constrained) dynamical behaviour is developed by each one of the 

bodies.   

 

5. CONCLUSIONS 
 

Regarding the mathematical model presented for FN (the normal component of the contact force developed between 

the colliding bodies), one of the main results of this investigation up to this point is the verification of the dependence of 

this force on the colliding bodies physical parameters and states. A poor knowledge of these quantities may result in a 

weak knowledge of the real system under investigation. It is hard (or impossible) sometimes to measure the constraint 

compliance – stiffness and damping. It means that some kind of identification or estimation of parameters must be 

carried through sooner or later by the analyst in order to have sufficient knowledge about and properly control such 

systems.  
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