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Abstract. Transient diffusion flames are important in several combustion processes, specially in turbulent flows that 
occur in a number of practical devices, such as in burners and flame holders. Turbulent flames can be studied locally 
considering the burning of small diffusion flames, i.e., laminar flamelets. If fuel and oxidizer present different diffusion 
coefficients the flamelet structure can be significantly affected. This work analyses the effects of differential diffusion of 
fuel and oxidizer on a single plane diffusion flame separating two semi-infinite regions. Approximate solutions are 
obtained using the integral method and the results are compared to an analytical solution. The effects of the ratio of 
diffusion coefficients and of the initial equivalence ratio on flame position and fuel consumption are analysed, for 
different approximate mixture profiles. 
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1. INTRODUCTION 
 

Turbulent diffusion flames appear in several combustion devices, such as burners and flame holders. In many cases 
turbulent flames can be studied locally considering the burning of small transient laminar diffusion flames, called 
flamelets. 

Analytical and numerical solutions for unsteady diffusion flames are usually modeled by adopting several 
simplifying assumptions. Constant density, constant specific heat and constant diffusion coefficients are common 
assumptions (Liñán and Williams, 1993; Thevenin and Candel, 1994; Marble, 1983). 

Since there is mostly fuel on one side of the flame and oxidizer on the other side, the governing diffusion 
coefficients on the two sides of a diffusion flame can be vastly different.  Consequently, the flame structure can be 
significantly modified. Fuel and oxidizer reach the flame position at different velocities and the temperature and 
mixture fraction profiles can be strongly affected. 

The objective of this work is to analyse the effects of different diffusion coefficients on the structure of laminar 
diffusion flames, considering the burning of a single unsteady plane diffusion flame separating fuel and oxidizer which 
are in two semi-infinite regions. 

An integral method using power profiles is adopted to obtain approximate solutions for the mixture fields, flame 
position and fuel consumption rates and the results are compared to the analytical solution obtained previously by Costa 
(2001). 

The solutions can be used as basic models in the analysis of flamelets and to give insight into fundamental aspects of 
diffusive burning with more complex geometries. 

 
2. MATHEMATICAL FORMULATION 
 
2.1. Unsteady diffusion flames 
 

The assumptions for this analysis are constant binary diffusion coefficients for the fuel side (D1) and the oxidant side 
(D2); constant and equal densities for both fuel and oxidizer; unity Lewis numbers, i.e., λ1/CP,1=ρD1 and λ2/CP,2=ρD2; 
the same initial temperatures, T0, for both fuel and oxidant; fast chemistry and a single step reaction with s kg of oxidant 
reacting with 1 kg of fuel; no thermal diffusion; instantaneous ignition at all points of the fuel-oxidant interface; mass 
fluxes of fuel and oxidizer at the flame position are considered in stoichiometric proportion; fuel is in the negative half-
space with initial mass fraction YF,0 while oxidant is in the positive half-space with initial mass fraction YO,0; the flame 
is planar, horizontal and uniform. 

Defining a Schvab-Zeldovich variable (Williams, 1985) eliminates the reaction terms in the reaction-diffusion 
equations: 
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where ,0 ,0F OsY Yφ =  is the initial equivalence ratio of the reactants. In the fuel side, YO,0 = 0 and 1β β≡ , and in the 

oxidizer side, YF,0 = 0 and 2β β≡ . Therefore, the governing equations for the mixture fractions in the fuel and oxidizer 
sides become, respectively:  
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where t is time, x is position and xf = xf(t) is flame position. 
The boundary and initial conditions for the problem are  

 
( )0 0fx = , (4)  

 
( )1 0, 0 1x tβ < = = , , (5)  (2 0, 0 0x tβ > = =

 
( )1 , 1x tβ → −∞ = , . (6)  ( )2 ,x tβ → ∞ =

 
The conditions at the flame position are  

 
( ) ( )1 2, ,f fx t x t fβ β= β=  (7)  

 

1 1 2 2( ) ( )x f x fD x D xβ β=  (8)  
 

where 1 (1 )fβ φ= +  is a constant which depends on the stoichiometry.  
 
2.2.  Integral Solutions 
 

Linear and power profiles satisfying the boundary and interface conditions are considered in order to obtain an 
integral solution:  
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where xf  – δ1 is the fuel diffusion layer thickness, δ2 – xf is the oxidizer diffusion layer thickness, and n = 1, 2, … is the 
order of the power profile. 

Figure 1 shows a scheme of the profiles considered. It can be seen that δ1 and δ2 are positions where the fuel mixture 
fraction and the oxidizer mass fraction are not affected by the flame presence. Note that  and( )1 1 1β δ = ( )2 2 0β δ = , 

and for n > 1, ( )1 1 0m mxβ δ∂ ∂ =  and ( )2 2 0m mxβ δ∂ ∂ = , m = 1,…, n – 1.  
Integrating Eqs. (2) and (3) along the diffusion layers, yields, respectively:  
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Figure 1 – Approximate power profiles used in the integral method. 
 

 
Substituting Eqs. (9) and (10) into Eqs. (11) and (12), yields, respectively:  
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Substituting now the given profiles at the interface position, yields:  
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Replacing Eqs. (15) and (16) into Eqs. (13) and (14), respectively, and rearranging, gives: 
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Substituting Eqs. (15) and (16) into Eq. (8), gives:  
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φ
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where 2 1D Dα = . Consequently, the ratio of the diffusion layers’ thicknesses is given by 
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indicating that for α = 1, the flames with φ > 1 have fuel layer thickness larger than the oxidizer layer thickness, 
whereas flames with φ < 1 have oxidizer layer thickness larger than the fuel layer thickness. If φ = 1, the flames with α 
> 1 have fuel layer thickness smaller than the oxidizer layer thickness, whereas flames with α < 1 have oxidizer layer 
thickness smaller than the fuel layer thickness.  

Now, substituting Eq. (19a) into Eq. (18) and combining with Eq. (17), yields 
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It can be noted that 1c < , since . If φ = 1, 1n ≥ ( 1) /( 1 2c n)α α= − + + , and if α = 1, (1 ) /(1 )c nφ φ= − + .  Now, 

integrating Eq. (20) from 0 to t, yields:  
 

1fx cδ=  (22)  
  

Therefore, xf and δ1 have the same sign if 2α φ>  and the flame remains at the origin, xf = 0, when 2α φ= .  
Substituting Eq. (22) into Eqs. (17) and (19), and integrating, yields, respectively:  

 

1 14D tδ κ= −  (23)  
 

( )( )2 ( 1) 4c c D tδ α φ= − + − 1κ  (24)  
 

where 
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and, consequently, 
 

14fx c Dκ= − t   (26)  
  

The fuel and oxidizer diffusion layer thicknesses are, respectively,  
 

1 (1 ) 4f 1x c Dδ κ− = − t  (27)  
 

( )2 ( 1) 4f 1x cδ κ α φ− = − D t  (28)  
 

It is seen in Eqs. (26-28) that the flame position and the diffusion layer thicknesses vary with .  1/ 2t
Equation (26) can be rewritten in terms of the oxidizer diffusion coefficient:  

 

24f ax D tγ=  (29)  
 

where  is an approximate coefficient for the non-dimensional flame position 1/ 2

a cγ κ α −=
 
2.3. Fuel consumption rate 
 

The fuel consumption rate per unit area is given by 
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Therefore,  
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and, since ( )1 11 4fx c Dδ κ− = − t , then 
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For D2 = D1, it follows that 
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yielding: 
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Consequently, the ratio of the fuel consumption rate of a fuel burning with an oxidizer with a different diffusion 

coefficient and the fuel consumption rate of a fuel burning with an oxidizer having the same diffusion coefficient is 
given by 
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which simplifies to , when φ =1. 

2 1, 1/(1 )a D Dr c≠ = −
 
2.4. Comparison with the exact solution 
 

Equations (1-8) represent a Stefan type problem, as described by Crank (1956, 1984) and Carslaw and Jaeger 
(1959). An analytical solution was obtained by Costa (1995) who found expressions for the mixture fraction profiles:  
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with the flame position given by 

 

24fx D tγ=  (37)  
 

where γ  is a flame position coefficient, calculated from the relation 
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In Eq. (38), if the flame is stationary, i.e., γ = 0, then 2α φ= , the same result found with the approximate solution.  
The analytical mass fraction gradient is given by 
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and, consequently, the exact fuel mass consumption rate is  
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 The ratio of the approximate consumption rate to the exact fuel consumption rate is 
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3. RESULTS AND DISCUSSION 
 

Figure 2 compares the approximate non-dimensional position flame coefficient, γ ′ ,  using 1st, 2nd and 7th order 
profiles. It can be verified that profiles higher than 7th order do not show significant differences from the 7th order 
profiles within the range considered. It is seen that γ decreases with decreasing φ  and increasing α, however its absolute 
value can increase with α, for φ = 0.5 and 1.0. 

Figure 3 shows the analytical flame position coefficient and the approximate flame position coefficient using 7th 
order profiles. It is verified that the integral solution is relatively closer to the exact solution for lower γ, i.e., for flames 
with low velocity. The approximate coefficients have the same order of magnitude of the analytical coefficient in the 
range considered. 

Figures 4 and 5 show the fuel consumption ratio r versus α and φ, for a 7th order and a 1st order profile, respectively. 
It can be seen that 1st order profiles gives the best approximation in terms of fuel mass consumption rates, since r is 
closer to unity in most cases. 
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Figure 2 – Non-dimensional flame position coefficient versus ratio of diffusion coefficients for several initial 

equivalence ratios. (1st order - no symbols; 2nd order: dotted;  7th order: + ). 
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Figure 3 – Comparison of analytical flame position coefficients, γ, and 7th order approximate flame position 

coefficients, γa. 
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Figure 4 – Ratio of approximate and exact fuel consumption rates, r, versus diffusivity ratio, α = D2/D1, and initial 

equivalence ratio, φ,  for a 7th order profile. 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

D2/D1

r

phi = 0.5 
phi = 1.0 
phi = 2.0 

 
Figure 5 – Ratio of approximate and exact fuel consumption rates, r, versus diffusivity ratio, α = D2/D1, and initial 

equivalence ratio, φ,  for a 1st order profile. 
 

 
4. CONCLUSIONS 
 

An integral solution describing the propagation of a single unsteady plane diffusion plane separating two semi-
infinite regions has been presented and compared to the analytical solution. The results indicate that the flame position 
coefficients from the approximate solutions have the same order of magnitude of the exact solution coefficients. Low 
velocity flames yield the best approximate results. The fuel consumption rates obtained from lower order profiles were 
closer to the analytical consumption rates than those obtained from higher order profiles. The present method can be 
easily applied to other geometries.  

 
5. REFERENCES 

Costa, F.S., Effects of Differential Diffusion on Unsteady Diffusion Flames, International Communications in heat and 
Mass Transfer, 2001.  

Crank, J., The Mathematics of Diffusion, Clarendon Press, Oxford (1956). 
Crank, J., Free and Moving Boundary Problems, Clarendon Press, Oxford (1984). 
Liñán, A., Williams, F.A., Ignition in an Unsteady Mixing Layer Subject to Strain and Variable Pressure, Comb. and 

Flame 95, 31 (1993). 
Marble, F.E., Growth of a Diffusion Flame in the Field of a Vortex, Advances in Aerospace Science, C.Casci Ed., 

Plenum Press, NY (1983). 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

Thevenin, D., Candel, S., Effect of Variable Strain on the Dynamics of Diffusion Flame Ignition, Comb. Sci. and Tech. 
91, 73 (1993). 

Williams, F.A., Combustion Theory, 2nd ed, Benjamin Cummins, California (1985). 
 
5. RESPONSIBILITY NOTICE 
 

The authors are the only responsible for the printed material included in this paper. 
 


