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Abstract. In this work the nonlinear behavior of a simply supported cylindrical shell under a sudden axial step load of 
infinite duration is investigated. The shell is modelled through the nonlinear shell theory of Donnell and the discretized 
equations of motion are obtained by the method of Galerkin based on a low dimensional modal solution derived in 
previous publications by the authors. The shell is initially considered to be at rest inside a potential well associated 
with the stable pre-buckling configuration. The effects of small initial geometric imperfections on the shell behavior is 
presented. The variation of the dynamic buckling load as a function of the geometric imperfection using Budiansky’s 
stability criterion is evaluated. It is observed that the escape occurs in the neighborhood of the saddle point that 
defines the frontier of the stable region. The erosion of the safe region of the basin of attraction with the load 
increment is also investigated. The sudden reduction of the safe region highlights the imperfection sensitivity of the 
shell under this type of load. 
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1. INTRODUCTION 
 

In spite of its simple geometric form, cylindrical shells  can display a complex behavior due to its geometric non-
linearity and sensitivity to the initial geometric imperfections. Thus, the detailed knowledge of its static and dynamic 
behavior becomes essential to have a structural project that is simultaneously economic and safe. However little it is 
known on the nonlinear behavior of thin cylindrical shells under dynamic loads.  

The influence of geometric imperfections on the static behavior of cylindrical shells  under axial loads is well known  
in the technical literature, having been studied by various researchers  in the past (Yamaki, 1984). These studies show 
that the imperfections have a great influence on the nonlinear behavior of the shell, causing a marked decrease in the 
critical load of the structure. However, the consideration of the initial geometric imperfections in the analysis of 
cylindrical shells  under dynamic loads is inexpressive in literature. Del Prado (2001), using the nonlinear theory of 
Donnell for shallow shells , studied, for a cylindrical shell submitted to harmonic axial loads, its nonlinear vibrations and 
the dynamic instability. The author evaluated the effect of initial geometric imperfections on the static and dynamic 
behavior of the shell, concluding that small initial geometric imperfections in the form of the critical mode or the 
nonlinear mode can cause significant changes in its nonlinear dynamic behavior and in the critical loads.  

Gonçalves et. al. (2005), using the nonlinear theory of Donnell and a reduced modal expansion including only two 
terms, have studied the effect of the geometric imperfections on the global stability of a simply supported cylindrical 
shell with internal fluid. To describe the initial geometric imperfections, two analyses have been made: first, a modal 
expansion with only the basic mode was assumed, and, in the second one, a modal solution containing the basic mode 
plus the axi-symmetrical mode. It is observed that the results are sensitive to the form of the imperfection. They also 
noticed that the geometric imperfections did not change the mechanisms of loss of stability of the shell, as observed by 
Silva et. al. (2004a, 2004b). The presence of initial geometric imperfections diminishes the safe region of the basin of 
attraction of the pre-buckling solution as the level of imperfection increases. 

In the present work, the nonlinear theory of Donnell for shallow shells  together with a low dimensional model is 
used to study the nonlinear vibrations and the stability boundaries of a cylindrical shell submitted to a sudden axial load. 
The nonlinear differential equations of motion are solved by the Runge-Kutta method. The main objective of this study 
is to study the influence of the geometric imperfections and a suddenly applied load of infinite duration (step load) on 
the global stability of the structure.  
 
2. PROBLEM FORMULATION 
 

A simply-supported cylindrical shell of radius R, thickness h and length L is considered. The shell material is 
defined by a modulus of elasticity E, a coefficient of Poisson ν  and a density ρ. The axial, circumferential and radial 
coordinates  are defined, respectively, by x, y and z and the corresponding displacements by u, v and w, as shown in 
Fig. 1. 
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Figure1. Geometry of the shell and coordinate system.  
 

The shell is submitted to an axial compressive load distributed along the upper and lower edges of the form:  
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where P0  is  an initial static load and P1  is the suddenly applied axial load of infinite duration. 
Based on the nonlinear theory of Donnell for shallow shells , the nonlinear equations of mo tion in the transversal 

direction and the compatibility equation are given, respectively, by:  
 

( ) ( )xyixydxyyyiyydxxxxixxdyy wwF
R

wwFwwFwDwwwh ,,,,,,,,,
44

21 2
1

+−





 ++++=∇+∇++ &&&& ββρ  (2) 

 

( ) 



 ++−−+−=∇ 2

,,,,,,,,
4 2

11
xydxydxyiyyixxdyydxxixxd wwwwwwww

R
f

hE
 (3) 

 
where: 

 
2

1
2

0 2
1

2
1

yPyPfffF FF −−=+=  (4) 

 

where  wi  is the initial geometric imperfection, 4∇ , the bi-harmonic operator,  β1  and β2, the coefficients of viscous and 
material damping, respectively, and D, the flexural stiffness defined as:  
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The following non-dimensional parameters are used in the analysis :  
 

( ) ( )
12

2
1

102

2
0

0
1313

P
hE

R

P
P

P
hE

R

P
P

R
y

L
x

h
wW

crcr

νν
θξ

−
==Γ

−
==Γ===  (6) 

 
where Pcr  is the classical critical load for a simply-supported cylindrical shell (Brush and Almroth, 1975).  

Previous studies on the proper modal solutions for cylindrical shells  have shown that the modal solution must 
represent the existing coupling between asymmetric and axi-symmetric modes and describe in a consistent way the 
unstable post-critical response of the shell as well as the correct frequency-amplitude relation (Gonçalves and Del 
Prado, 2005). The most important modes are the basic buckling (or vibration) mode and the axi-symmetric mode with 
two times the number of half-waves in the axial direction as the basic mode. Thus, the lateral displacement can 
approximately be given by:  

 
( ) ( ) ( ) ( ) ( )ξπτζξπθτζ mmnWd 2cossincos 0211 +=  (7) 

 
where n is the number of waves in the circumferential direction and m is the number of half-waves in the axial 
direction. 
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The initial geometric imperfections are taken in the form: 
 

( ) ( )ξπθ mnWi sincos11Ξ=  (8) 
 

where Ξ11 is the imperfection amplitude.  
Substituting the expansions for Wd  and Wi on the right hand side of the compatibility equation, Eq. (3), it is possible 

to find an expression for the stress function f  as a function of wd  and wi  that satisfies the in-plane boundary and 
continuity conditions of the shell. Now, substituting wd, wi and f  in Eq. (2) and applying the Galerkin method, a set of 
discretized ordinary nonlinear equations of motion in terms of the time-dependent modal amplitudes ζ(τ)ij is obtained.  

 
3. NUMERICAL RESULTS 
 

In this work a cylindrical shell of length L = 0. 4 m, radius R = 0.2 m and thickness h = 0.002 m is considered. The 
material of the shell is assumed as linear and elastic with modulus of elasticity E  =2.1 x 1011 N/m² and coefficient of 
Poisson ν = 0.30. The shell  material density is  ρ = 7850 kg/m³. The coefficients of viscous and material damping are: 
β1= ερhω0, with ε = 0.0008 (Pellicano and Amabili, 2003), and β2  = ηD with η = 0.0001. For this geometry, the 
vibration mode associated with the minimum frequency has (m, n) = (1, 5). 

 

  
(a) Γ0 = 0.00 (b) Γ0 = 0.40 

 
(c) Γ0 = 0.80 

 
Figure 2. Variation of the modal amplitude 11ζ  as a function of the step load parameter, 1Γ . 

 
Fig. 2 shows the variation of the amplitude of displacement in the first mode, ζ11, a s  a function of the non-

dimensional step load parameter, Γ1, for increasing values of the static pre-load level, Γ0, and selected values of the 
initial geometric imperfection, Ξ11. The shell response is obtained by solving the nonlinear equations by Newton-
Raphson method together with continuation techniques, where the continuous curves  represent the stable steady 



solutions and the dashed curves, the unstable solutions. After reaching the critical step-load value, the shell displays a 
sudden increase in the radial displacements, denoted by the arrows, jumping from a pre -buckling configuration to a 
post-buckling one characterized by large displacements.  

Fig. 3 shows the time response of the shell vibration amplitude ζ11(t) for a static pre-load level of Γ0 = 0.40 and 
increasing values of the imperfection amplitude Ξ11, for values of Γ1 just below and above the critical value. As 
observed in the figures, a small increment in the step load parameter causes a jump to a new equilibrium position along 
the advanced post-buckling path. The presence of initial geometric imperfection adds a certain amount of bending 
energy to the shell, so the initial response is no longer trivial as in the perfect case, as one can observe in Figures 3b and 
3c for Γ1 = 0.49 and Γ1 = 0.31, respectively. 

 

  
(a) Ξ11 = 0.00 (b) Ξ11 = 0.10 

 
(c) Ξ11 = 0.50 

 
Figure 3. Time response of the shell. Γ0 = 0.40. 

 
To evaluate this sensitivity to the initial geometric imperfections, the variation of the critical load, normalized by the 

critical load of the perfect shell as a function of the imperfection amplitude is investigated. The results are presented in 
Figure 4 for three different values of the static pre-load, Γ0. The results show the high imperfection sensitivity of the 
shell under step load and that it increases with the amount of static pre-load. As shown in some previous paper by the 
authors (Silva et. al. 2004a, 2004b), the critical load of the imperfect system, although much lower than the critical load 
of the perfect one, is still an upper bound of the load capacity of the shell, due to its sensitivity to initial conditions. This 
sensitivity can be illustrated by the erosion of transient and permanent basins of attraction (Rega and Lenci, 2006). 

The erosion of the basin of attraction of the permanent response with the increment of the step load parameter and 
the geometric imperfection was investigated and the results are shown in the Figs. 6-8. The dashed line represents the 
contour of the pre-buckling potential well in the plane )()( 0211 τζτζ x , which defines in this plane the set of initial 
conditions to be investigated in order to define the safe region. The safe region is defined as the set of all initial 
conditions whose time response, after a transient, converges to the safe permanent state. This is the black region in Figs. 
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6-8. The safe attractor is denoted by a yellow dot. The white region corresponds to the set of initial conditions that leads 
to escape from the pre-buckling well (dynamic buckling or snap-through). 

 

 
 

Figure 4. Variation of the normalized critical load with the imperfection magnitude. 
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Figure 5. Projections of the post-critical response of the perfect shell (a and c) and the homoclinic and heteroclinic 
orbits connecting the two saddles (b) which define and four different classes of solution of the conservative 

system. 
 

The region of inspected initial conditions is obtained from the analysis of the conservative system subjected to a 
static axial load. This gives a general idea of the global behavior of the shell (Gonçalves et. al. 2007a, 2007b). The 
profile of this region is explained by the initial post-critical behavior of the perfect shell depicted in Figs. 5a and 5c. At 
the critical point along the trivial pre-buckling path a sub-critical bifurcation occurs. The unstable post-buckling path 
then reaches a minimum value where a fold bifurcation occurs. The new emerging path is stable and it is connected with 
large bending deformations. For Γ0 < Γmin, the system presents only one equilibrium position. For Γmin < Γ0 < Γcr  the 
system has five equilibrium positions, three are stable and two are unstable. Table 1 show the eigenvalues associated to 



these equilibrium points, the unstable solutions are saddles. Thus, for a given value of Γ0, the safe region is accurately 
defined by the heteroclinic orbits that connects the saddle points and bounds the trivial pre -buckling solution (Fig. 5b). 
 

Table 1. Equilibrium points and the respective eigenvalues.  
 

Equilibrium points Coordinates ( )02110211 ,,, ζζζζ &&  Eigenvalues Type 

P 1  (pre -buckling) (0, 0, 0, 0) ±0.30î; ±3.168i (center-center) 
P 2, P 3  (saddle) (±4.946, -0,811, 0, 0) ±0.255; ±3.527i (saddle-center) 

P 4, P 5  (post buckling) (±6.632, -1,412, 0, 0) ±0.318i; 3.756i (center-center) 
 

  
(a) Γ1 = 0.00 (b)  Γ1 = 0.30 

  
(c) Γ1 = 0.60 (d) Γ1 = 0.61 

 
Figure 6. Erosion of the safe basin of attraction. Cross sections of the basins by the ζ11 x ζ02 plane for Γ0 = 0.40 and 

Ξ11 = 0.00. ( )0.00211 ==ζζ && .  
 
Figures 6-8 show the erosion of the basin of attraction (black area) with the increment of the step load parameter, Γ1, 

up to at the critical value where it becomes zero, that is, no set of initial condition on this plane converges to the desired 
solution. By comparing the basins of attraction of the perfect shell shown in Fig. 6 with those in Figs. 7 and 8, one can 
observe the marked influence of the initial imperfections on the topology of basin of attraction. With the increase of the 
geometric imp erfections, the basin of attraction that was symmetrical in relation to co-ordinate ζ 11, losses its symmetry.  

The influence of the imperfections on the process of erosion of the basin of attraction is illustrated in Fig. 9 that 
shows the variation of the safe area of the basin, normalized by the area of the conservative system (enclosed by the 
dashed curve), as a function of the step load parameter. The safe area decreases steadily as the load increases and 
becomes zero at the critical value of the load parameter. This decrease is accentuated by increasing imperfection. These 
results corroborate the high imperfection sensitivity of cylindrical shells under axial loads. Due to the unavoidable 
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imperfections and disturbances from the initial conditions expected in real systems, the load capacity of the shell is 
expected to be much lower than the critical value, even when the imperfections are considered in the problem modeling. 

 

  
(a) Γ1 = 0.20 (b) Γ1 = 0.40 

  
(c) Γ1 = 0.49 (d) Γ1 = 0.50 

 
Figure 7. Erosion of the safe basin of attraction. Γ0 = 0.40 and Ξ11 = 0.10. ( )0.00211 ==ζζ && . 

 

  
(a) Γ1 = 0.20 (b) Γ1 = 0.25 



  
(c) Γ1 = 0.31 (d) Γ1 = 0.32 

 
Figure 8. Erosion of the safe basin of attraction. Γ0 = 0.40 and Ξ11 = 0.50. ( )0.00211 ==ζζ && .  
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Figure 9. Variation of the normalized safe area of the basin of attraction with Γ1, for increasing values of the 
imperfection magnitude Ξ11. Γ0 = 0.40. 

 
4. CONCLUSIONS 
 

Based on the nonlinear equations of Donnell for shallow shells, a qualitatively consistent low dimensional model is 
derived to study the dynamic behavior and stability of thin cylindrical shells  under a suddenly applied step load of 
infinite duration, considering in the modeling the effects of initial geometric imperfections. The shell displacement field 
is described approximately by a sum of two shape functions that describes the well-known modal interaction between 
the critical mode and the companion axi-symmetric mode. The initial geometric imperfections are considered to have 
the same shape as the classical buckling or vibration mode of the shell. The influence of geometric imperfections on the 
value of the critical step load and on the erosion of the safe basin of attraction was studied in detail. It is concluded that 
the imperfections decrease the value of the critical step load, which can be much lower than the critical value for the 
perfect shell. The critical step load also decreases, as expected, with an increase in the static pre-load. It can also be 
observed that the imperfections cause an asymmetry in the basin of attraction, when compared with the basin of the 
perfect shell. These results can serve as a basis for the design engineers, indicating the necessary cares when they 
project shells  submitted to sudden axial step loads. In particular, they must have in mind that geometric imperfections 
can appear both during the manufacture process and during the service life of the structure, causing significant 
reduction in its load capacity. So, proper safety factors must be used to prevent catastrophic buckling of the structure. 
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