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Abstract. For meta model generation, the choice of experimental datatp is very important. Design of Experiments
provides a tool that can aid the process of point selectiothiz design space. One popular design of experiments
technique is the Latin Hypercube technique. This is a fagjeinerate design, that is widely used. However, due the
random nature of the generation process, the Latin Hypezalgsign can produce a bad design for fitting a meta model.
The Optimal Latin Hypercube design was introduced to overethis difficulty. It satisfies the same requirements as the
Latin Hypercube design, but ensures that the points areibliged to uniformly cover the design space. A problem with
using the Optimal Latin Hypercube design is the computatfioost required to generate the design. This paper dessribe
an optimization algorithm for generating the Optimal Lattypercube design in a cost efficient manner. A method for

directly generating the design without performing optiatian is also presented. Finally, numerical results areaepd,
illustrating the proposed methodologies.

Keywords: Design of Experiments, Optimal Latin Hypercube, ApproxiareMethods.

1. INTRODUCTION

Approximation methods have been widely used in engineel@sign to reduce the required computational cost (Bates
et al., 2004; Jin et al. 2005). For example, the Ford Motor Samy reports that a single crash simulation of a car can
take between 36 and 160 hours to complete (Gu, 2001). Appition methods, for example Design of Experiments
(DOE) combined with Response Surface Methodology (RSMisél to approximate the objective or constraint functions
using a small number of numerical simulations. The appratiom, or meta model, is then used in place of the numerical
simulation when performing the optimization task, desigace exploration and reliability analysis (Simpson et24104).
Bates et al. (2004) justified the use of this approach baséd@needs:

1. To minimize the number of responses evaluations
2. Toreduce the effect of numerical noise

Several commonly used approaches are available to achiese goals e.g., RSM and Kriging approximations. Both
these approaches require the evaluation of the responsédius at a number of design points when constructing the
resulting approximations. Typically, DOE is used to idgntfhe design points at which to evaluate the response fomsti
Each point in the design space is defined by a specific conibdimaf the input parameters (design variables). The
evaluation of the response functions may constitute phaysixperiments or computer simulations. Once the response
values are known at the DOE points, an approximation is cocistd that provides the user with an explicit, approximate
relationship between the design variables and responsesh & approximation model is often referred to as a meta
model. Design of Experiments aims to extract as much inftionas possible from a limited number of design points.
There are many different criteria available for creatingesign of experiments. One such criterion is a space filling
design that aims to cover as much of the design space. Onem@Nn space filling design is the Latin Hypercube
design, proposed by McKay et al. (1979) and Iman and CondgsQ).

There are several advantages to using the Latin Hypercigigrde

e The number of samples (points) is not fixed
e Orthogonality of the sampling points
e The sampling points do not depend on the meta model that eitidmstructed

The Latin Hypercube design is constructed in such a way thett ene of the\/ design variables is divided inty
equal levels and that there is only one point (or experinfengach level (Bates et al., 2004). The final Latin Hypercube
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design then ha® samples. Figuré shows two possible Latin Hypercube designs fér= 2 and N = 5. Note that

the Latin Hypercube design is constructed using a randoceglae. This process results in many possible designs, each
being equally good in terms of the Latin Hypercube cond&ioHowever, a design that is ill suited for creating a meta
model is possible, even if all the Latin Hypercube requiretaare satisfied, as illustrated in Fi¢o).

1 9 1 9
L 4 L 4
X2 L 2 X2 L 4
[
L ®
0 X1 1 0 X1 1
(a) Latin Hypercube 01 (b) Latin Hypercube 02

Figure 1. Latin Hypercube DoE fa¥/ = 2 andN = 5.

To overcome the above mentioned problem, @m@imal Latin Hypercubelesign was introduced to improve the
space-filling property of the Latin Hypercube design. Thdi®@al Latin Hypercube design augments the Latin Hyper-
cube design by requiring that the sample points be distgtbais uniformly as possible throughout the design space.
Unfortunately, the Optimal Latin Hypercube design resuita time consuming optimization problem. For example, to
optimize the location of 10 samples in 4 dimensions (thex 4 Latin Hypercube design) the optimizer has to select the
best design from more tha?? possible designs. If the number of design variables is asd to5 (the 10 x 5 Latin
Hypercube design), the number of possible designs are mans t< 1032,

To solve the Optimal Latin Hypercube design, it is necesgafgrmulate an optimization problem that describes the
best design. Audze and Eglais (1977) proposed a methodskate potential energy of the sample points to generate a
uniform distribution. Johnson et al. (1990) introducedstatice criterion as an objective function. Morris and Maith
(1995) presented thg, criterion as an alternative to the distance criterion. Basethe previous criteria, several authors
reported different strategies to solve the resulting ojz@tion problem. Morris and Mitchell (1995) adapted a vensof
the simulated annealing algorithm. Ye et al. (2000) usedanzowise-pairwise algorithm. Bates et. al (2004) used a
special implementation of the genetic algorithm. Howetleg,computational cost of these algorithms is generally hig
(Bates et al., 2004; Jin et al. 2005). For example, Ye et &)0@2 reported that generating ad x 4 Optimal Latin
Hypercube design using the columnwise-pairwise algoritbmd take several hours on a Sun SPARC 20 workstation.

The question then arises how to obtain an optimal or nearlynymn Latin Hypercube design, while limiting the
required computational resources? One possible soligitmgolve the resulting optimization problem in an appratien
sense, i. e., to obtain a good answer quickly, rather thamnfinthe best possible solution. In this paper we used an
algorithm that is not only able to quickly construct a goodida of experiments, but also possess global properties,
allowing it to move away from a locally optimal design (Jire¢t2005).

2. OPTIMAL LATIN HYPERCUBE DESIGN OF EXPERIMENTS

The Optimal Latin Hypercube design problem is defined asch@ay for a desigiK*, which minimizes the objective
function f:

X* = min f(X) . 1)

The objective function is formulated to achieve the reqiinaiform space-filling property and, as a result, to avoid
situations such as that illustrated in Fib). In this paper, the,, criterion (Morris and Mitchell, 1995; Jin et al., 2005)
was used for the objective function. From EGsand3 it is clear that this objective function results in the maization
of the point-to-point distance in the design (Johnson el8P0). A design is called @,-optimal design, if it minimizes:

s 1/p
bp = [Z Jidﬁ’] : 2
=1
where

e pis a positive integer (with a very large the¢,, criterion is equivalent to the maximin distance criteridm(et al.,
2005),
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e d;'s are distinct distance values with < ds < ... < d4
e J; is the number of pairs of points in the design separated, bgnd

e s is the number of distinct distance values.

By sorting all the point-to-point distaneg; (1 < i,j < n,i # j), the distance listd,, ds, ..., d,s) and the index list
(J1, Jo, ..., Js) can be obtained. To close the definition, the inter-sited distance can be expressed kil

M 1/t
d(Xi,Xj) =di; = [Z |xi — xjk|t] , t=1or2 . (3)
k=1

Up to this point, only the optimization problem was definedowdver, in order to efficiently obtain an Optimal
Latin Hypercube design, more than the problem definitioneguired. An appropriate optimization algorithm, with
a cost efficient means of evaluating the objective functeme, also important. To overcome the high computational
cost associated with the existing approaches the methatl insthis work is supported by (a) an adaptation and an
enhancement of a global search algorithm, i.e., the EnltbStechastic Evolutionary Algorithm, and (b) an efficient
method for evaluating the objective function to reduce @ gutational cost.

3. ENHANCED STOCHASTIC EVOLUTIONARY ALGORITHM

The algorithm used to solve this problem is thehanced Stochastic Evolutionary AlgoritfESEA), introduced by
Jin et al. (2005). The ESEA is a modified version of the Stoah&s/olutionary Algorithm, developed by Saab and
Rao (1991). The ESEA, as shown in Fig, consists of an inner loop and an outer loop. The inner looysitacts
new designs by an element-exchange approach and dictagtseritio accept the designs based on a certain acceptance
criterion dealing with the location of the points. A setbEatin Hypercube designs is taken by exchanging two elements
within the column {mod m) and then the best of thif designs is chosen to be compared with the current best@oluti
The outer loop controls the entire optimization processdjysting the threshold valug, in the acceptance criterion of
the inner loop. According to Jin et al. (2005), this dynanduatment of the acceptance criterion enable the algorithm
avoid local minima designs. During this proceXs, st is used to keep track of the best design.

3.1 Inner Loop

The inner loop is responsible for constructing new designsgding an element-exchange approach. The new designs
can be accepted or rejected, based on an acceptance aritesiicdeals with the location of the points. As can be seen
in Fig. 2(b), the inner loop had/ iterations. At iteration, a set ofJ Latin Hypercube designs is created by exchanging
two elements within the columri frod m) of the current desigriX, with the best of thesé designs X,,.,, selected for
comparison with the current solutioX,. The substitution oX by X,., depends on the acceptance criterion given by:

Af < Ty x random (0,1) , 4)
where:
e Af= f(XtTy) — f(X),
e random (0, 1) is a function that generates uniform random numbers bet@esa 1, and

e T} > 0is the threshold control parameter.

Xry Will be accepted only if it satisfie® < A f < 7T}, and the probability of acceptance given by:

Af
Th

P(S=Af/Th) =1~ ; (5)

Using the scheme guided by Egé.and5, the algorithm attempts to avoid local solutions. It can b&aed that a
temporarily worse desigiX,, , could be accepted to replace the current desggrifablel gives the values for the inner
loop parameters, according to Jin et al. (2005).
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Figure 2. Basic scheme for ESEA.
Table 1. Inner loop parameters.
Parameter | Value Comments
J ne/5, but no larger| n. is the number of all possible distinkt= 2 element-exchanges
than50. in a column. In the Latin Hypercube case = () = k!(ﬁk)!.
2X N x M . . . . .
M —————, but no| M is the number of iterations in the inner loop.
larger thanl 00.
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3.2 Outer Loop

The outer loop controls the entire optimization processdjysting the threshold valug, in the acceptance criterion
of the inner loop. Initially,T;, is taken as a small fraction of the initial desigh,(= 0.005 x ¢, (Xo)) and its value
is dynamically updated during the search process. Thels@aocess is divided in two main stages: (a) itm@roving
process which attempts to find a locally optimal design, and, (b) ¢ékploration processwhich try to escape from the
locally optimal design. These two stages are discussed e detail below.

Improving process : The search process switches to the improving process iheriterion is improved after com-
pleting an entire inner loop. This mechanism is controllgdfbugi,.p, i.€. flagim, = 1. Once in the improving
process]}, is adjusted to rapidly find a local optimal design. This is el&eeping the value df;, small, so that
only a better, or a slightly worse, design is accepted toaagX. T}, is updated based on the acceptance ratio
nacpt/M (number of accepted design divided by the number of trieféninner loop) and the improvement ra-
tio nmp/M (number of improved design divided by the number of trieshia inner loop). Thus, there are the
following possibilities:

1. Ty, will decrease if the acceptance ratio is larger than a snesigmtage (e.g1,0%) and the improvement
ratio is less than the acceptance ratio.

2. Ty, will remain constant if the acceptance ratio is larger thendmall percentage and the improvement ratio
is equal to the acceptance ratio (meaning hais so small that only improving designs are accepted by the
acceptance criterion).

3. T;, will increase otherwise.

The following equations are used to decrease and inctBasespectively:

T = a T (6)
ew Told
Th = O}éLl ) (7)

where0 < a; < 1. AsinJin et al. (2005), setting; = 0.8 worked well in all tests.

Exploration process : If no improvement is made after completing an entire inm@pl the search process will turn
to the exploration process. This mechanism is controlleglay;,,,, i.e. flagim, = 0. During the exploration
process]}, is adjusted to help the algorithm escape from a locally ogitidesign. Unlike the improving process,
T}, fluctuates within a range based on the acceptance ratioe Hidheptance ratio is less than a small percentage
(e.g.,10%), Ty, will rapidly increase until the acceptance ratio is lardgeart a large percentage (e&f1%). If this
happensy}, will slowly decrease until the acceptance ratio is less thasmall percentage. This process will be
repeated until an improved design is found.

The following equations are used to decrease and inciBgsespectively:

T = anTi ®)
ew Told
e = ;3 : 9)

where0 < ag < as < 1.AsinJinetal. (2005)x,; = 0.8 andas = 0.7 worked well in all tests.

As a result, during the exploration proce$3, increases rapidly (so that worse designs could be acceftd®ip
escape a local optimal design. Arf), decreases slowly for finding better designs after movingyafn@m the local
optimal design.

For the whole algorithm, the maximum number of cycles is wesethe stopping criterion.
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4. EFFICIENT APPROACH FOR EVALUATING THE OPTIMALITY CRITERION

Since the objective function is evaluated whenever a nevgded experiments is constructed, the efficiency of this
evaluation becomes very important for creating the Optibain Hypercube design within a reasonable time frame.
Consider the evaluation of thg, based on Eg2. It can be seen that this process includes three parts, i.e.:

1. the evaluation of all the point-to-point distances,
2. the sorting of these distances to obtain a distance lgstratex list, and
3. the evaluation of the, value.

However, it can be observed that after an exchangg «— x;,x) only elements in rows, andi» and columng;
andi, are changed in th® distance matrix. Thus, if EqR could be written to take advantage of this fact, an efficient
way of calculation ofp,, is provided. It would avoid unnecessary calculations awedstrting required by EcR. In this
case, the new,, is computed by:

by = l¢§ + ((délj)_p - (dilj)_p)
1<G<n,j#in ia

(10)

1/p
> (<d;1j>”<dm>”)] '

1<j<n,j#i1 iz

where

1/t
Y d/ :dl = [(dilj)t+s(il7i2)k7j):| '

i1J Ji1

/ / t . . . 1/t
° deJ = d]’L2 = |:(d12]) - (217127k7]):| ,and

o s(i1,i2,k,J) = |Tisk — $jk|t — |wi 8 — xjk|t-

Table2 provides an indication of possible savings in computatitine when using Eq10to evaluate the objective
function. In Table2, T, is the objective function calculated through Etjand 7., nanceq is the enhanced approach,
using Eq.10. Table2 shows the wall-clock time.

Table 2. Time comparison between two ways of calculatingthjective function (adopted from Jin et al. (2005)).

Latin Hypercube | 12 x4 25 x 4 50 x 5 100 x 10
Tennanced/Trun | 0.454545 | 0.192308 | 0.082645 | 0.032787

5. AN EMPIRICAL APPROACH TO CREATE STRUCTURED LATIN HYPERCUBE DESIGNS

This section describes an empirical approach to createlastuettured design that is reasonably close to an Optimal
Latin Hypercube design, without performing formal optiatibn. The importance of such an approach resides in the fact
that it gives the capability to create a Latin Hypercubegieghat has better space filling properties than the starigsinal
Hypercube design, using minimum computational time (attmsexonds). The resulting design can be used either as an
initial design for the Optimal Latin Hypercube generatgaalthm or as a good approximate Optimal Latin Hypercube
design. In this case, one should take into account a compeobgitween obtaining best Optimal Latin Hypercube design
and the computational cost required to generate that design

The approach is quite simple and is based on the hope thatsihgpée V-dimensional Latin Hypercube that can be
constructed from & -dimensional seed design. Instead of a formal descriptidineoapproach, a practical example will
be used to explain the methodology.

Consider the case wherd @ x 2 Optimal Latin Hypercube design is required, iJ& points in2-dimensions. First, a
small Latin Hypercube will be selected for being used as d gesign in the process. Figuseshows some examples of
2-dimensional seed designs. Fig@(@)shows the seed used in this example. It is important to nttatehis seed can be
as simple as just & x N design (wheréV is the number of dimensions of the problem, i.e. number ofhdegariables).

Second, the design space is divided into blocks, in such aayeach dimension is divided in the same number of
blocks. The resultis that each block can be filled using tke siesign (defined previously). Itis clear that these pisE®s
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Figure 3. Examples of seed design fadimensions.

are inter-dependent. The seed size, i. e., the number ofsgoithe seed design, and the final design size will determine
the number of blocks in each dimension. In general, theiaiig relations must be observed:

LatinHypercubeSize = NumberO f Blocks x SeedSize , (12)
NumberOfBlocks = (NumberO f Divisions)y “mber@f Dimensions , (12)
) DesignSize
SeedSize = 13
cedotze NumberO f Blocks (13)

Using our seed design, Fig.shows how thé6 x 2 Latin Hypercube mesh will be divided into blocks. It is imaort
to point out that the fact of each block has four rows and falmmns of the Latin Hypercube mesh does not mean that
each block will have four points at the end of the processtelts of that, this is a way to ensure the minimal distance
between point on the final Latin Hypercube.
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Figure 4.16 x 2 Latin Hypercube divided mesh.

The seed design must be properly placed into each of the fldeigure5 illustrates how this process is applied.
The first step is to properly scale the “seed design” and thecing it at the origin. Next, a set of “shiftings” must be
performed. The first one is to shift the seed to consecutiveksl following one of the dimensions. The second one is
to shift the origin of the seed inside the mesh of the blocker€his a coupling between these two process. If the block
shifting is performed on the rows, the seed-origin shift tilaesperformed on the columns, and vice-versa. This process
is repeated until to fill one of the dimensions. After thag tthole set of points placed in that dimension can be used to
feedback the “shifting” process that continues filling tlextdimensions.

The biggest advantage of this approach is that there areloal&i@ons to perform. All operations can be viewed as
translations of anV-points block in anV-dimensional hypercube. Preliminary studies have beedwtded that show
promising results in low-dimensional cases.
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6. NUMERICAL RESULTS
6.1 Optimal Latin Hypercube

As an illustration of how the entire technique works, Fig.shows both the initial Latin Hypercube, i.e. before
optimization, and the final Optimal Latin Hypercube, whistobtained by solving the optimization problem. The initial
Latin Hypercube is a random design with good one-dimensiomgective properties (in other words, there is only one
point for each level), but with a poor space-filling propefiiiis is typically for Latin Hypercube designs. In contrdke
Optimal Latin Hypercube design maintains the projectiva@perty while providing an excellent space filling property.
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(a) Initial Latin Hypercube
Figure 6.16 x 2 Latin Hypercube before and after optimization.

(b) Final Optimal Latin Hypercube

Tab. 3 gives the wall-clock time for creating a set of OLH. Thesautsswere obtained using a PC with a 1000 Mhz
Pentium Il Zeon processor, running Linux.

Table 3. Time consumption for several Optimal Latin Hypéeu

Design Time[q
10 x 2 <1
50 x 2 5
100 x 2 23
10 x 5 <1
50 x 5 6
100 x 25 38
200 x 25 324
100 x 50 45
200 x 50 387
200 x 100 395

At this point, the effectiveness of the solution when usihg present approach for generating the Optimal Latin
Hypercube design can be illustrated. Tablshows a comparison between three different strategiestiidstrategies
that use Genetic Algorithms are described by Bates et al.dtg$et al. (2004). The two Genetic Algorithms make use of
the potential/-criterion for the objective function instead of thg-criterion used in the present work. THiscriterion
is analogous to the potential energy of the system of matmwiats and can be expressed by:

N N 1
U= > & (14)
p=1lg=p+1 P4
whered,,, is the inter-distance between the poipisndg of the design.

Comparing both the number of function evaluations and theevaf U-criterion, it is easy to see that the current
approach is a compromise between computational cost artue8tdinal design. The advantage is clear specially when
comparing the number of function evaluations for large glesi In general, the present technique quickly generates an
answer that has good space-filling properties, but is nasggily the “optimum” design.

6.2 Structured Latin Hypercube Designs

Figure7 illustrates two examples where the proposed empiricalagr was applied.
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Table 4. Number of function evaluations required for difer Optimal Latin Hypercube generators. The values within
parenthesis represent the potential enérggriterion.

Design Binary Genetic Algorithm | Permutation Genetic Algo- | Enhanced Stochastic Evo-
(data from Bates et al. | rithm (data from Bates et | lutionary Algorithm
(2004)) al. (2004)
5x 2 60 (1.2982) | 50 (1.2982) | 2,040 (1.2982)
10 x 2 39,240 (2.0662) | 1,860 (2.0662) | 5,085 (2.1393)
120 x 2 22,003, 500 (5.7733) | 130,570 (5.5174) | 114,000 (5.7542)
5x%x3 5,260 (0.7267) | 1,922 (0.7267) | 3,060 (0.7361)
10 x 3 165,980 (1.0401) | 38,950 (1.0242) | 4,950 (1.0359)
120 x 3 5,908, 540 (2.0541) | 1,996,920 (1.9613) | 184,800 (2.0309)
50 x 5 280, 000, 000 (0.7348) | 1,996,840 (0.7270) | 143,000 (0.7670)
120 x 5 59, 802, 200 (0.8003) | 1,998,540 (0.7930) | 475,200 (0.8167)
Latin Hypercube PY Seed
l ‘ Latin Hypercube Seed
® 6? ® I o
® Py ;‘1
Te hd o Ry
®- ® Le-
@ * * @
L @
L @
R @ * @
L o
@ @
o |? *Hie
® [ e [
(a) 18 x 2Latin Hypercube (b) 16 x 2 Latin Hypercube

Figure 7. Examples of structured Latin Hypercube designs.
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The appeal of this approach is that virtually no computatidime is required to create the designs. This empirical
approach can be used either to obtain a quick answer or taaere good starting point for a formal Optimal Latin
Hypercube optimization. Tableshows the performance comparison of the Optimal Latin Hyyee generator starting
from three different initial guesses. For all cases, thpgittg criterion used was a maximum number of 100 iterations.
The three initial guesses used were: (a) the worst (diayomihl design (as shown in FidL(b)), (b) an empirical design,
and (b) a random initial design.

Table 5. Optimal Latin Hypercube generator with three défe initial guesses.

Design size Quantity Wor st case Structured case | Random case
Time [s] 143 68 147

995 % 2 Iter_at_i(_)ns 251 101 237
¢p initial 0.55715 0.07052 0.51110
¢y final 0.07560 0.07052 0.07528
Time [s] 11155 3868 7838
Iterations 284 101 202

102452 ¢y initial 0.57433 0.03527 0.50697
¢y final 0.04218 0.03527 0.04258
Time [s] 313 372 469
Iterations 283 336 424

256 x 4 —
¢y initial 0.27929 0.01658 0.03846
¢p final 0.01101 0.01087 0.01082
Time [s] 609 556 550
Iterations 547 498 494

243 x 5 —
¢y initial 0.22320 0.01303 0.02668
¢p final 0.00686 0.00688 0.00679
Time [s] 34283 27772 29421
Iterations 601 489 518

1024510 ¢y initial 0.22973 0.00440 0.01086
¢p final 0.00233 0.00234 0.00232

Note that for the 2D cases, the formal optimization could ingtrove the¢,-criterion obtained by the empirical
approach. This indicates that the for the 2D cases, the @alapproach produced the optimum results at no computatio
cost. For the higher dimensional cases, the formal optitioizavere able to make only small improvements to ¢he
values obtained from the empirical approach. This is a dighthe empirical design is, at least near to a local minima in
higher dimensions.

7. CONCLUSIONS

In this paper, an efficient and affordable algorithm for ¢anging the Optimal Latin Hypercube Design of Exper-
iments was introduced. The complete approach includes tajomelements: (a) the use of the Enhanced Stochastic
Evolutionary Algorithm for performing the search processd (b) the employment of an efficient method for evaluating
the optimality criteria ¢,,).

An empirical approach to create structured Latin Hyperaildsigns was also presented. This approach is based on
the idea that a simple “seed design”, with few points, candssluo build a complete design. The main advantage of the
technique is that it produces a design requiring virtuatlycomputational cost. Test cases in 2D show that the approach
produces designs that could not be improved using a formah@ation approach. In higher dimensions, the formal
optimization approach could make small improvements talésgns obtained from the empirical approach. Future work
will include both the discussion about the influence of thexxts’ on the final design and enhancements on the algorithm
in order to work better in higher dimensions.
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