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Abstract. For meta model generation, the choice of experimental data points is very important. Design of Experiments
provides a tool that can aid the process of point selection inthe design space. One popular design of experiments
technique is the Latin Hypercube technique. This is a fast-to-generate design, that is widely used. However, due the
random nature of the generation process, the Latin Hypercube design can produce a bad design for fitting a meta model.
The Optimal Latin Hypercube design was introduced to overcome this difficulty. It satisfies the same requirements as the
Latin Hypercube design, but ensures that the points are distributed to uniformly cover the design space. A problem with
using the Optimal Latin Hypercube design is the computational cost required to generate the design. This paper describes
an optimization algorithm for generating the Optimal LatinHypercube design in a cost efficient manner. A method for
directly generating the design without performing optimization is also presented. Finally, numerical results are reported,
illustrating the proposed methodologies.
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1. INTRODUCTION

Approximation methods have been widely used in engineeringdesign to reduce the required computational cost (Bates
et al., 2004; Jin et al. 2005). For example, the Ford Motor Company reports that a single crash simulation of a car can
take between 36 and 160 hours to complete (Gu, 2001). Approximation methods, for example Design of Experiments
(DOE) combined with Response Surface Methodology (RSM), isused to approximate the objective or constraint functions
using a small number of numerical simulations. The approximation, or meta model, is then used in place of the numerical
simulation when performing the optimization task, design space exploration and reliability analysis (Simpson et al.,2004).
Bates et al. (2004) justified the use of this approach based ontwo needs:

1. To minimize the number of responses evaluations

2. To reduce the effect of numerical noise

Several commonly used approaches are available to achieve these goals e.g., RSM and Kriging approximations. Both
these approaches require the evaluation of the response functions at a number of design points when constructing the
resulting approximations. Typically, DOE is used to identify the design points at which to evaluate the response functions.
Each point in the design space is defined by a specific combination of the input parameters (design variables). The
evaluation of the response functions may constitute physical experiments or computer simulations. Once the response
values are known at the DOE points, an approximation is constructed that provides the user with an explicit, approximate
relationship between the design variables and responses. Such an approximation model is often referred to as a meta
model. Design of Experiments aims to extract as much information as possible from a limited number of design points.
There are many different criteria available for creating a design of experiments. One such criterion is a space filling
design that aims to cover as much of the design space. One wellknown space filling design is the Latin Hypercube
design, proposed by McKay et al. (1979) and Iman and Conover (1980).

There are several advantages to using the Latin Hypercube design:

• The number of samples (points) is not fixed

• Orthogonality of the sampling points

• The sampling points do not depend on the meta model that will be constructed

The Latin Hypercube design is constructed in such a way that each one of theM design variables is divided intoN
equal levels and that there is only one point (or experiment)for each level (Bates et al., 2004). The final Latin Hypercube
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design then hasN samples. Figure1 shows two possible Latin Hypercube designs forM = 2 andN = 5. Note that
the Latin Hypercube design is constructed using a random procedure. This process results in many possible designs, each
being equally good in terms of the Latin Hypercube conditions. However, a design that is ill suited for creating a meta
model is possible, even if all the Latin Hypercube requirements are satisfied, as illustrated in Fig.1(b).

(a) Latin Hypercube 01 (b) Latin Hypercube 02

Figure 1. Latin Hypercube DoE forM = 2 andN = 5.

To overcome the above mentioned problem, theOptimal Latin Hypercubedesign was introduced to improve the
space-filling property of the Latin Hypercube design. The Optimal Latin Hypercube design augments the Latin Hyper-
cube design by requiring that the sample points be distributed as uniformly as possible throughout the design space.
Unfortunately, the Optimal Latin Hypercube design resultsin a time consuming optimization problem. For example, to
optimize the location of 10 samples in 4 dimensions (the10 × 4 Latin Hypercube design) the optimizer has to select the
best design from more than1022 possible designs. If the number of design variables is increased to5 (the10 × 5 Latin
Hypercube design), the number of possible designs are more than6× 1032.

To solve the Optimal Latin Hypercube design, it is necessaryto formulate an optimization problem that describes the
best design. Audze and Eglais (1977) proposed a method that uses the potential energy of the sample points to generate a
uniform distribution. Johnson et al. (1990) introduced a distance criterion as an objective function. Morris and Mitchell
(1995) presented theφp criterion as an alternative to the distance criterion. Based on the previous criteria, several authors
reported different strategies to solve the resulting optimization problem. Morris and Mitchell (1995) adapted a version of
the simulated annealing algorithm. Ye et al. (2000) used a columnwise-pairwise algorithm. Bates et. al (2004) used a
special implementation of the genetic algorithm. However,the computational cost of these algorithms is generally high
(Bates et al., 2004; Jin et al. 2005). For example, Ye et al. (2000) reported that generating an25 × 4 Optimal Latin
Hypercube design using the columnwise-pairwise algorithmcould take several hours on a Sun SPARC 20 workstation.

The question then arises how to obtain an optimal or nearly optimum Latin Hypercube design, while limiting the
required computational resources? One possible solution is to solve the resulting optimization problem in an approximate
sense, i. e., to obtain a good answer quickly, rather than finding the best possible solution. In this paper we used an
algorithm that is not only able to quickly construct a good design of experiments, but also possess global properties,
allowing it to move away from a locally optimal design (Jin etal. 2005).

2. OPTIMAL LATIN HYPERCUBE DESIGN OF EXPERIMENTS

The Optimal Latin Hypercube design problem is defined as searching for a designX∗, which minimizes the objective
functionf :

X
∗ = min f(X) . (1)

The objective function is formulated to achieve the required uniform space-filling property and, as a result, to avoid
situations such as that illustrated in Fig.1(b). In this paper, theφp criterion (Morris and Mitchell, 1995; Jin et al., 2005)
was used for the objective function. From Eqs.2 and3 it is clear that this objective function results in the maximization
of the point-to-point distance in the design (Johnson et al., 1990). A design is called aφp-optimal design, if it minimizes:

φp =

[

s
∑

i=1

Jid
−p
i

]1/p

, (2)

where

• p is a positive integer (with a very largep, theφp criterion is equivalent to the maximin distance criterion (Jin et al.,
2005),
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• di’s are distinct distance values withd1 < d2 < . . . < ds

• Ji is the number of pairs of points in the design separated bydi, and

• s is the number of distinct distance values.

By sorting all the point-to-point distancedij(1 ≤ i, j ≤ n, i 6= j), the distance list(d1, d2, ..., ds) and the index list
(J1, J2, ..., Js) can be obtained. To close theφp definition, the inter-sited distance can be expressed as follows:

d(xi,xj) = dij =

[

M
∑

k=1

|xik − xjk |
t

]1/t

, t = 1 or 2 . (3)

Up to this point, only the optimization problem was defined. However, in order to efficiently obtain an Optimal
Latin Hypercube design, more than the problem definition is required. An appropriate optimization algorithm, with
a cost efficient means of evaluating the objective function,are also important. To overcome the high computational
cost associated with the existing approaches the method used in this work is supported by (a) an adaptation and an
enhancement of a global search algorithm, i.e., the Enhanced Stochastic Evolutionary Algorithm, and (b) an efficient
method for evaluating the objective function to reduce the computational cost.

3. ENHANCED STOCHASTIC EVOLUTIONARY ALGORITHM

The algorithm used to solve this problem is theEnhanced Stochastic Evolutionary Algorithm(ESEA), introduced by
Jin et al. (2005). The ESEA is a modified version of the Stochastic Evolutionary Algorithm, developed by Saab and
Rao (1991). The ESEA, as shown in Fig.2, consists of an inner loop and an outer loop. The inner loop constructs
new designs by an element-exchange approach and dictates whether to accept the designs based on a certain acceptance
criterion dealing with the location of the points. A set ofJ Latin Hypercube designs is taken by exchanging two elements
within the column (i modm) and then the best of thisJ designs is chosen to be compared with the current best solution.
The outer loop controls the entire optimization process by adjusting the threshold valueTh in the acceptance criterion of
the inner loop. According to Jin et al. (2005), this dynamic adjustment of the acceptance criterion enable the algorithmto
avoid local minima designs. During this process,Xbest is used to keep track of the best design.

3.1 Inner Loop

The inner loop is responsible for constructing new designs by using an element-exchange approach. The new designs
can be accepted or rejected, based on an acceptance criterion that deals with the location of the points. As can be seen
in Fig. 2(b), the inner loop hasM iterations. At iterationi, a set ofJ Latin Hypercube designs is created by exchanging
two elements within the column (i modm) of the current design,X, with the best of theseJ designs,Xtry, selected for
comparison with the current solution,X. The substitution ofX by Xtry depends on the acceptance criterion given by:

∆f ≤ Th × random (0, 1) , (4)

where:

• ∆f = f (Xtry)− f (X),

• random (0, 1) is a function that generates uniform random numbers between0 and1, and

• Th > 0 is the threshold control parameter.

Xtry will be accepted only if it satisfies0 < ∆f < Th and the probability of acceptance given by:

P (S ≥ ∆f/Th) = 1−
∆f

Th
, (5)

Using the scheme guided by Eqs.4 and5, the algorithm attempts to avoid local solutions. It can be noticed that a
temporarily worse design,Xtry , could be accepted to replace the current design,X. Table1 gives the values for the inner
loop parameters, according to Jin et al. (2005).
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(a) Outer Loop (b) Inner Loop

Figure 2. Basic scheme for ESEA.

Table 1. Inner loop parameters.

Parameter Value Comments
J ne/5, but no larger

than50.
ne is the number of all possible distinctk = 2 element-exchanges
in a column. In the Latin Hypercube casene =

(

N
k

)

= n!
k!(n−k)! .

M
2×N ×M

J
, but no

larger than100.

M is the number of iterations in the inner loop.
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3.2 Outer Loop

The outer loop controls the entire optimization process by adjusting the threshold valueTh in the acceptance criterion
of the inner loop. Initially,Th is taken as a small fraction of the initial design (Th = 0.005 × φp (X0)) and its value
is dynamically updated during the search process. The search process is divided in two main stages: (a) theimproving
process, which attempts to find a locally optimal design, and, (b) theexploration process, which try to escape from the
locally optimal design. These two stages are discussed in more detail below.

Improving process : The search process switches to the improving process if theφp-criterion is improved after com-
pleting an entire inner loop. This mechanism is controlled by flagimp, i.e. flagimp = 1. Once in the improving
process,Th is adjusted to rapidly find a local optimal design. This is done keeping the value ofTh small, so that
only a better, or a slightly worse, design is accepted to replaceX. Th is updated based on the acceptance ratio
nacpt/M (number of accepted design divided by the number of tries in the inner loop) and the improvement ra-
tio nimp/M (number of improved design divided by the number of tries in the inner loop). Thus, there are the
following possibilities:

1. Th will decrease if the acceptance ratio is larger than a small percentage (e.g.,10%) and the improvement
ratio is less than the acceptance ratio.

2. Th will remain constant if the acceptance ratio is larger than the small percentage and the improvement ratio
is equal to the acceptance ratio (meaning thatTh is so small that only improving designs are accepted by the
acceptance criterion).

3. Th will increase otherwise.

The following equations are used to decrease and increaseTh respectively:

T new
h = α1T

old
h , (6)

T new
h =

T old
h

α1
, (7)

where0 < α1 < 1 . As in Jin et al. (2005), settingα1 = 0.8 worked well in all tests.

Exploration process : If no improvement is made after completing an entire inner loop, the search process will turn
to the exploration process. This mechanism is controlled byflagimp, i.e. flagimp = 0. During the exploration
process,Th is adjusted to help the algorithm escape from a locally optimal design. Unlike the improving process,
Th fluctuates within a range based on the acceptance ratio. If the acceptance ratio is less than a small percentage
(e.g.,10%), Th will rapidly increase until the acceptance ratio is larger than a large percentage (e.g.80%). If this
happens,Th will slowly decrease until the acceptance ratio is less thanthe small percentage. This process will be
repeated until an improved design is found.

The following equations are used to decrease and increaseTh, respectively:

T new
h = α2T

old
h , (8)

T new
h =

T old
h

α3
, (9)

where0 < α3 < α2 < 1 . As in Jin et al. (2005),α2 = 0.8 andα3 = 0.7 worked well in all tests.

As a result, during the exploration process,Th increases rapidly (so that worse designs could be accepted)to help
escape a local optimal design. And,Th decreases slowly for finding better designs after moving away from the local
optimal design.

For the whole algorithm, the maximum number of cycles is usedas the stopping criterion.
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4. EFFICIENT APPROACH FOR EVALUATING THE OPTIMALITY CRITERION

Since the objective function is evaluated whenever a new design of experiments is constructed, the efficiency of this
evaluation becomes very important for creating the OptimalLatin Hypercube design within a reasonable time frame.
Consider the evaluation of theφp based on Eq.2. It can be seen that this process includes three parts, i.e.:

1. the evaluation of all the point-to-point distances,

2. the sorting of these distances to obtain a distance list and index list, and

3. the evaluation of theφp value.

However, it can be observed that after an exchange(xi1k ←→ xi2k) only elements in rowsi1 andi2 and columnsi1
andi2 are changed in theD distance matrix. Thus, if Eq.2 could be written to take advantage of this fact, an efficient
way of calculation ofφp is provided. It would avoid unnecessary calculations and the sorting required by Eq.2. In this
case, the newφp is computed by:

φ′
p =

[

φp
p +

∑

1≤j≤n,j 6=i1,i2

(

(

d′i1j

)−p
− (di1j)

−p
)

∑

1≤j≤n,j 6=i1,i2

(

(

d′i1j

)−p
− (di1j)

−p
)

]1/p

.

(10)

where

• d′i1j = d′ji1
=

[

(di1j)
t
+ s (i1, i2, k, j)

]1/t

,

• d′i2j = d′ji2
=

[

(di2j)
t
− s (i1, i2, k, j)

]1/t

, and

• s (i1, i2, k, j) = |xi2k − xjk|
t
− |xi1k − xjk|

t.

Table2 provides an indication of possible savings in computational time when using Eq.10 to evaluate the objective
function. In Table2, Tfull is the objective function calculated through Eq.2 andTenhanced is the enhanced approach,
using Eq.10. Table2 shows the wall-clock time.

Table 2. Time comparison between two ways of calculating theobjective function (adopted from Jin et al. (2005)).

Latin Hypercube 12× 4 25× 4 50× 5 100× 10
Tenhanced/Tfull 0.454545 0.192308 0.082645 0.032787

5. AN EMPIRICAL APPROACH TO CREATE STRUCTURED LATIN HYPERCUBE DESIGNS

This section describes an empirical approach to create a well structured design that is reasonably close to an Optimal
Latin Hypercube design, without performing formal optimization. The importance of such an approach resides in the fact
that it gives the capability to create a Latin Hypercube design that has better space filling properties than the standardLatin
Hypercube design, using minimum computational time (at most, seconds). The resulting design can be used either as an
initial design for the Optimal Latin Hypercube generator algorithm or as a good approximate Optimal Latin Hypercube
design. In this case, one should take into account a compromise between obtaining best Optimal Latin Hypercube design
and the computational cost required to generate that design.

The approach is quite simple and is based on the hope that the asimpleN -dimensional Latin Hypercube that can be
constructed from aN -dimensional seed design. Instead of a formal description of the approach, a practical example will
be used to explain the methodology.

Consider the case where a16× 2 Optimal Latin Hypercube design is required, i.e.,16 points in2-dimensions. First, a
small Latin Hypercube will be selected for being used as a seed design in the process. Figure3 shows some examples of
2-dimensional seed designs. Figure3(a)shows the seed used in this example. It is important to noticethat this seed can be
as simple as just a1×N design (whereN is the number of dimensions of the problem, i.e. number of desing variables).

Second, the design space is divided into blocks, in such a waythat each dimension is divided in the same number of
blocks. The result is that each block can be filled using the seed design (defined previously). It is clear that these processes
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(a) 1× 2

seed de-
sign.

(b) 2×2 seed
design.

(c) 3×2 seed design. (d) 4 × 2 seed design.

Figure 3. Examples of seed design for2-dimensions.

are inter-dependent. The seed size, i. e., the number of points in the seed design, and the final design size will determine
the number of blocks in each dimension. In general, the following relations must be observed:

LatinHypercubeSize = NumberOfBlocks× SeedSize , (11)

NumberOfBlocks = (NumberOfDivisions)NumberOfDimensions , (12)

SeedSize =
DesignSize

NumberOfBlocks
. (13)

Using our seed design, Fig.4 shows how the16× 2 Latin Hypercube mesh will be divided into blocks. It is important
to point out that the fact of each block has four rows and four columns of the Latin Hypercube mesh does not mean that
each block will have four points at the end of the process. Instead of that, this is a way to ensure the minimal distance
between point on the final Latin Hypercube.

Figure 4.16× 2 Latin Hypercube divided mesh.

The seed design must be properly placed into each of the blocks. Figure5 illustrates how this process is applied.
The first step is to properly scale the “seed design” and then placing it at the origin. Next, a set of “shiftings” must be
performed. The first one is to shift the seed to consecutive blocks following one of the dimensions. The second one is
to shift the origin of the seed inside the mesh of the block. There is a coupling between these two process. If the block
shifting is performed on the rows, the seed-origin shift must be performed on the columns, and vice-versa. This process
is repeated until to fill one of the dimensions. After that, the whole set of points placed in that dimension can be used to
feedback the “shifting” process that continues filling the next dimensions.

The biggest advantage of this approach is that there are no calculations to perform. All operations can be viewed as
translations of anN -points block in anN -dimensional hypercube. Preliminary studies have been conducted that show
promising results in low-dimensional cases.
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Figure 5.16× 2 Structured Latin Hypercube creation process.
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6. NUMERICAL RESULTS

6.1 Optimal Latin Hypercube

As an illustration of how the entire technique works, Fig.6 shows both the initial Latin Hypercube, i.e. before
optimization, and the final Optimal Latin Hypercube, which is obtained by solving the optimization problem. The initial
Latin Hypercube is a random design with good one-dimensional projective properties (in other words, there is only one
point for each level), but with a poor space-filling property. This is typically for Latin Hypercube designs. In contrast, the
Optimal Latin Hypercube design maintains the projective property while providing an excellent space filling property.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Initial Latin Hypercube

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Final Optimal Latin Hypercube

Figure 6.16× 2 Latin Hypercube before and after optimization.

Tab. 3 gives the wall-clock time for creating a set of OLH. These results were obtained using a PC with a 1000 Mhz
Pentium III Zeon processor, running Linux.

Table 3. Time consumption for several Optimal Latin Hypercube.

Design Time [s]
10× 2 < 1
50× 2 5
100× 2 23
10× 5 < 1
50× 5 6

100× 25 38
200× 25 324
100× 50 45
200× 50 387
200× 100 395

At this point, the effectiveness of the solution when using the present approach for generating the Optimal Latin
Hypercube design can be illustrated. Table4 shows a comparison between three different strategies. Thetwo strategies
that use Genetic Algorithms are described by Bates et al. by Bates et al. (2004). The two Genetic Algorithms make use of
the potentialU -criterion for the objective function instead of theφp-criterion used in the present work. ThisU -criterion
is analogous to the potential energy of the system of material points and can be expressed by:

U =

N
∑

p=1

N
∑

q=p+1

1

d2
pq

, (14)

wheredpq is the inter-distance between the pointsp andq of the design.

Comparing both the number of function evaluations and the value of U -criterion, it is easy to see that the current
approach is a compromise between computational cost and thebest final design. The advantage is clear specially when
comparing the number of function evaluations for large designs. In general, the present technique quickly generates an
answer that has good space-filling properties, but is not necessarily the “optimum” design.

6.2 Structured Latin Hypercube Designs

Figure7 illustrates two examples where the proposed empirical approach was applied.
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Table 4. Number of function evaluations required for different Optimal Latin Hypercube generators. The values within
parenthesis represent the potential energyU -criterion.

Design Binary Genetic Algorithm
(data from Bates et al.
(2004))

Permutation Genetic Algo-
rithm (data from Bates et
al. (2004)

Enhanced Stochastic Evo-
lutionary Algorithm

5× 2 60 (1.2982) 50 (1.2982) 2, 040 (1.2982)
10× 2 39, 240 (2.0662) 1, 860 (2.0662) 5, 085 (2.1393)
120× 2 22, 003, 500 (5.7733) 130, 570 (5.5174) 114, 000 (5.7542)
5× 3 5, 260 (0.7267) 1, 922 (0.7267) 3, 060 (0.7361)
10× 3 165, 980 (1.0401) 38, 950 (1.0242) 4, 950 (1.0359)
120× 3 5, 908, 540 (2.0541) 1, 996, 920 (1.9613) 184, 800 (2.0309)
50× 5 280, 000, 000 (0.7348) 1, 996, 840 (0.7270) 143, 000 (0.7670)
120× 5 59, 802, 200 (0.8003) 1, 998, 540 (0.7930) 475, 200 (0.8167)

(a) 18 × 2Latin Hypercube (b) 16 × 2 Latin Hypercube

Figure 7. Examples of structured Latin Hypercube designs.
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The appeal of this approach is that virtually no computational time is required to create the designs. This empirical
approach can be used either to obtain a quick answer or to generate a good starting point for a formal Optimal Latin
Hypercube optimization. Table5 shows the performance comparison of the Optimal Latin Hypercube generator starting
from three different initial guesses. For all cases, the stopping criterion used was a maximum number of 100 iterations.
The three initial guesses used were: (a) the worst (diagonal) initial design (as shown in Fig.1(b)), (b) an empirical design,
and (b) a random initial design.

Table 5. Optimal Latin Hypercube generator with three different initial guesses.

Design size Quantity Worst case Structured case Random case

225× 2

Time [s] 143 68 147
Iterations 251 101 237
φp initial 0.55715 0.07052 0.51110
φp final 0.07560 0.07052 0.07528

1024× 2

Time [s] 11155 3868 7838
Iterations 284 101 202
φp initial 0.57433 0.03527 0.50697
φp final 0.04218 0.03527 0.04258

256× 4

Time [s] 313 372 469
Iterations 283 336 424
φp initial 0.27929 0.01658 0.03846
φp final 0.01101 0.01087 0.01082

243× 5

Time [s] 609 556 550
Iterations 547 498 494
φp initial 0.22320 0.01303 0.02668
φp final 0.00686 0.00688 0.00679

1024× 10

Time [s] 34283 27772 29421
Iterations 601 489 518
φp initial 0.22973 0.00440 0.01086
φp final 0.00233 0.00234 0.00232

Note that for the 2D cases, the formal optimization could notimprove theφp-criterion obtained by the empirical
approach. This indicates that the for the 2D cases, the empirical approach produced the optimum results at no computation
cost. For the higher dimensional cases, the formal optimization were able to make only small improvements to theφp-
values obtained from the empirical approach. This is a sign that the empirical design is, at least near to a local minima in
higher dimensions.

7. CONCLUSIONS

In this paper, an efficient and affordable algorithm for constructing the Optimal Latin Hypercube Design of Exper-
iments was introduced. The complete approach includes two major elements: (a) the use of the Enhanced Stochastic
Evolutionary Algorithm for performing the search process,and (b) the employment of an efficient method for evaluating
the optimality criteria (φp).

An empirical approach to create structured Latin Hypercubedesigns was also presented. This approach is based on
the idea that a simple “seed design”, with few points, can be used to build a complete design. The main advantage of the
technique is that it produces a design requiring virtually no computational cost. Test cases in 2D show that the approach
produces designs that could not be improved using a formal optimization approach. In higher dimensions, the formal
optimization approach could make small improvements to thedesigns obtained from the empirical approach. Future work
will include both the discussion about the influence of the “seed” on the final design and enhancements on the algorithm
in order to work better in higher dimensions.
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