
Proceedings of COBEM 2007 |19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November, 5 - 9, 2007, Brasília, DF 

 

APPLICATION OF MULTILAYER NEURAL NETWORKS FOR 
REDUCING DATA ACQUISITION TIME 

 
José Aristides dos Santos Machado 
Federal University of Para 
Computation and Electrical Engineering Department – Av. Augusto Corrêa, 01 
66075-110 Belém – Para - Brazil 
e-mail: josearistides@gmail.com 
 
Hiran de Melo 
Federal University of Campina Grande 
Informatics and Electrical Engineering Center – Av. Aprígio Veloso, 882 
58109-970 Campina Grande – Paraiba - Brazil 
e-mail: hiran@dee.ufcg.edu.br 
 
Petrônio Vieira Júnior 
Federal University of Para 
Computation and Electrical Engineering Department – Av. Augusto Corrêa, 01 
66075-110 Belém – Para - Brazil 
e-mail: petronio@ufpa.br 
 
Raimundo Carlos Silvério Freire 
Federal University of Campina Grande 
Informatics and Electrical Engineering Center – Av. Aprígio Veloso, 882 
58109-970 Campina Grande – Paraiba - Brazil 
e-mail: rcsfreire@dee.ufcg.edu.br 
 
Francisco Ferreira Santos 
Federal University of Campina Grande 
Informatics and Electrical Engineering Center – Av. Aprígio Veloso, 882 
58109-970 Campina Grande – Paraiba - Brazil 
e-mail: ffsantos@dee.ufcg.edu.br 
 
Abstract. This paper discusses a new strategy for improving the dynamic parameters estimation of a flexible 
mechanical structure represented by a Multiple Degree of Freedom System (MDOF) model. The improvement refer to 
the Frequency Response Function (FRF), obtained by measuring the mechanical system impulse response. The 
hypothesis of this study is that the considered model (mechanical model) is suitable to describe the system. Therefore, 
an efficient method for obtaining experimentally the FRF should give a significant conformity between the theoretical 
FRF and the experimental FRF. This study investigates the quality improvement obtained by increasing the virtual 
acquisition time (forecasting). Such strategy makes use of Linear Predictors (ARX and ARMAX models) and Non 
Linear Predictors (Multilayer Neural Networks). Results obtained from graphics and tables suggest that Multilayer 
Neural Networks are feasible for this use. 
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1. INTRODUCTION 

 
The monitoring of structures and equipments is part of a scientific field named Structural Integrity Evaluation, 

which comprehends the application of methods and procedures to diagnose any damage in a structure, to predict its 
behavior and indicate its monitoring needs, inspection or recuperation, in order to prolong its useful life and 
consequently avoid its functionality loss. (Freire et al., 1994). To make this evaluation, it is generally necessary to 
perform several tests, by measuring parameters and the response of materials that compose the structure. In 
consequence of those tests, it is necessary to interrupt the local routine for sometime. 

In places such as highway bridges, footbridges, dams, offshore petroleum platforms, manufactures, industries, 
among others, long interruptions to perform structural tests may cause considerable damages (i.e. bothering people, 
offering risk of accidents while not using footbridges) and economical damages (i.e. profit reduction, due to the 
decrease of production), (Pimentel, 1997). Therefore, referring to structures vibration, new methods are necessary to 
reduce the stop time in data acquisition. 

Acquisition methods that make use of the Frequency Response Function (FRF) establish a relationship between the 
system response in displacement, speed or acceleration and its respective inputs, which generally are impulsive forces 
(MCconell, 1995). Several studies have been using Multilayer Neural Networks (MLNN) in FRF data analysis. 



 WU et al. (1992) has identified damages in a three steps building selecting the 200 initial points o the FRF as input 
for a MLNN. In Melo’s (2002) study, an estimate of the system frequency response has produced a better result by SPI, 
than using linear predictors, when considering simulations with experimental data, without needing a previous model of 
the structure. 

This study contribution is the investigation of MLNN application in flexible structures data analysis. Instead of 
vibration signal acquisition equipments, simulations based on the flexible structure model are applied to acquire data. 
The acquisition of vibration signal is made by sampling the system impulse response. The system is represented by the 
Two Degrees of Freedom (2DOF).  The system mechanical model, which is the simplest from Multiple Degrees of 
Freedom  (MDOF). 

 
2.   IDENTIFICATION OF FREQUENCY RESPONSE FUNCTION 

 
Consider a 2DOF system, represented in Figure 1 with the following element values: m1 = m2 = m3 = 10kg, 

c1 = c2 = c3 = 3 N.s/m and k1 = k2 = k3 = 1600 N/m. 
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Figure 1. Representation of a 2DOF model 
 

The Transfer Function for the displacement produced by an external impulsive force u(t) in m1 is presented in 
equation (1): 
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Applying the inverse Laplace transform to equation (1), yields: 

 
1( ) 0,0022 (21,9043 ) exp( 0,45 ) 0,0040 (12,6482 ) exp( 0,15 )x t sen t t sen t t= − + −        (2) 

 
Equation (2) is used in the simulation to obtain the “acquired” samples at each 0.0313 s (T / na = 1/32 s). In discrete 

time, this equation is named Vibration Measuments Simulator. For the case currently studied, the system natural 
frequencies may be calculated by (Thomson, 1998) the equation (3): 
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In FRF estimation, the Fast Fourier Transform (FFT) algorithm has been used. It calculates the Discrete Fourier 

Transform (DFT) of the discrete signal. From discrete DFT points, a FRF estimate for the system is obtained. Let x be a 
vector with N samples obtained in T seconds. Its DFT is a vector with the same length, whose elements are obtained 
from equation (3) (Oppenheim et al., 1997). 
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The FRF is a continuous curve. However, as it was estimated from a discrete signal, a FRF discrete time version is 

represented in Figure 2.  The continuous estimate may be obtained by linking the discrete FRF points. Therefore, 
reliable results in the frequency domain are obtained only when the acquisition time (number of samples) is relatively 
large. Thus, the larger the amount of available informations about the 2DOF model FRF, the better will be the estimate. 
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Figure 2. Discrete time FRF version: a) 128 samples; b) 1024 samples. 
 

The spacing between spectral lines is called frequency resolution, whose formal definition is given in equation (5). 
 

aff
N

∆ =      (5) 

 
Where 1/af t= ∆  the sampling frequency (number of samples per second), t∆  is the time gap between two 

successive samples, N is the total number of samples. As  aN f T= , where T is the total acquisition time of the 

signal, so 1/f T∆ = . Therefore, to improve the frequency resolution, the total acquisition time must be increased. 
Observe again Figure 2, in which the absolute value DFT graphics were drawn from samples acquired at a ratio of 

32 samples/s. In Figure 2.a, it is shown the DFT obtained from 128 samples (equivalent to 4 s), resulting  in a frequency 
resolution of 0.25 Hz. In Figure 2.b, it is shown the DFT obtained from 1024 samples (equivalent to 32 s), resulting in a 
frequency resolution of 0.0313 Hz. Finally, it must be noticed that the FRF estimates have their frequency resolution 
limited by the conditions of the signal acquisition (acquisition time), whereas in the mechanical model FRF that 
limitation does not exist. 

In Figure 3, it is shown a comparison between the graphic of the FRF estimated with 128 samples and the FRF of 
the ideal mechanical model. 
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Figure 3. Comparison between the ideal FRF and estimate FRF from the signal obtained by simulation. 



In the experimental obtaining process of the model through FRF, it is necessary to find the natural frequencies and 
damping ratios. The 2DOF mechanical model has two vibration modes, what results in the existence of two natural 
frequencies. An immediate estimate for the natural frequencies consists in identifying them as the frequencies in which 
occur the peaks of absolute value of the system impulse response FRF (Thomson, 1998). The damping ratios may be 
estimated by using the half power bandwidth method, in which the level 3 dB below each FRF peak corresponds to the 
half power point. (Rao, 1995). The larger the damping, the larger is the frequency range between these two points, as it 
is shown in Figure 4. 
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Figura 4. Half Power Bandwidth Method 
 

3.  LINEAR  METHOD 
 
To improve the quality of FRF estimate, it is convenient to enlarge the number of samples. This may de done by 

increasing the real data acquisition time or by using prediction methods. Using the linear method, similar to Ljung’s 
(1987), from 128 samples and a 0.0313 s sample interval, results in the identification of the ARX model type, with the 
following representation in discrete time domain: 
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Figure 5. Comparison between the estimates using a linear predictor. 
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Equation (7) was then an algorithm for future signal values estimation. From this equation, 896 samples have been 

generated, in addition to the 128 previous samples. In Figure 5, it is shown a comparison between this new estimate and 
the original signal FRF. 

  
4. NONLINEAR METHOD 
 

The use of the nonlinear method eliminate the previous need for knowing the structure model, what, for multiple 
degrees of freedom systems is more suitable, due to the many variables involved on it. 

Among the strategies that allow the application of MLNN in the FRF estimation of a structure with a reduced 
number of the vibratory signal samples, it was used the training approach by windowing (Melo, 1996).  

The proposed prediction strategy consists in dividing the set of 128 consecutive samples in 16 subsets with 8 
samples (windows), as shown in Table 1. Applying in the MLNN a window per time, in the next step, the window that 
was used as target it starts to use as input. This way, the set of training windows constituted is shown in the Tab. 2. 
 

Table 1. Discrete signal windowing 
 

Windows Signal Samples 

Win1 1 2 8....x x x  

Win2 9 10 16....x x x  

  
Win16 121 122 128....x x x  

 
Table 2. Set of training windows 

 
Set of Input Windows {Win1, Win2, ... ,Win15} 
Set of Target Windows {Win2, Win3... ,Win16} 

 
From these tests, it can be verified that a MLNN composed by 3 neurons in the input layer and 8 neurons in the 

output layer has produced satisfactory results. The MLNN architecture is shown in Figure 6. 
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Figure 6. Representation of the MLNN used in the prediction. 
 



The implemented training algorithm was the “backpropagation Levenberg Marquardt” (Hagan et al. 1994). The 
algorithm Levenberg Marquardt provides a good benefit between the speed of Newton’s method and the guaranteed 
convergence of the steepest descent.  

 
5. TESTS  AND RESULTS 

 
In Figure 6, the results described in both time and frequency domains are shown. In Figure 6.a, it is shown the 

improved discrete signal (32 s), comprehending the signal originated from the mechanical model (4 s, in red) and the 
further 896 samples (28 s, in blue), generated by the MLNN. In Figure 6.b, it is shown in blue the FRF estimate, 
produced by the addiction of the samples (from the initial 128  to 1024) obtained through the neural predictor and, in 
red, the FRF estimate, which is compared to the 128 samples produced from the representative 2DOF model. 
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Figure 6- a) The signal that was improved via neural predictor; b) Comparison between both of the FRF. 
 

To evaluate the MLNN training performance, not only comparative graphics, but also a quantitative comparison 
through the root mean square error (RMS) is available. In Table 3, the RMS values of the ideal mechanical model FRF 
for the studied estimates are shown. A new FRF estimate, the one that added samples through the Measurements 
Simulator, is also in Table 3.  
 

Table 3: Comparison of RMS values 
 

Estimate RMS*10-7 
Original Signal (128 samples) 126 
Enlarged Signal via 2DOF Neural Predictor (1024) 2,1 
Enlarged Signal via 2DOF Linear Predictor (1024) 3,7 
Enlarged Signal via SM (1024) 2,1 

 
From the analysis of the comparative graphics and Table 3, it is verifiable that the MLNN is able to enlarge the 

samples sequence with a performance similar to the linear preditors’ and similar to the Measument Simulator itself. 
These results show that the MLNNs are effective in the parameters estimate of flexible structures 

 
5.1 Gaussian white noise  

 
To investigate the measurement error influence over the methods used for the FRF estimation improvement, a 

addictive Gaussian white noise has been added to the signal, as shown in Figure 7. 
. 
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Figure 7. Noisy signal and addictive Gaussian white noise 
 

In linear prediction, the models Family ARX did not characterize as compatible with the nature of the simulated 
signal, i.e., a disturbed signal. Therefore, the models Family ARMAX was chosen for the study (Ljung, 1987). 

The obtained ARMAX model, identified from 128 samples and a uniform sample interval of 0.031 s, represented in 
the time domain, is given in equation (8). 
 

-1 -2 -3

1 -2 -3 4

0,0002126 0,0001917 0,0001579
1 3,3062 4,6082 3,1452 0,9116

q q q
q q q q− −

+ +
− + − +

         (8) 

 
In Figure 8, estimates obtained with the original signal and with the enlarged signal are shown. The estimate curve 

with the enlarged signal illustrates the effective improvement of the FRF quality. 
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Figure 8. FRF estimate obtained from ARMAX predictor  
 

The verification of the MLNN performance for the improvement of the noisy signal FRF estimate is made by 
enlarging it through a Network of the same architecture as shown in Figure 6. The estimated FRF is shown in Figure 9. 
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Figure 9. FRF estimate FRF obtained from a MLNN 
 

6. CONCLUSIONS 
 
From the analysis of the results, by means of graphics and tables with the MLNNs performance index, it was 

verified that they have the same prediction characteristics as the linear predictors based on ARX and ARMAX models, 
not only qualitatively but also quantitatively. Concerning the linear prediction models used for performance 
comparison, the ARX predictor presented a satisfactory result when considering the signal without disturbs, and for the 
disturbed signal the ARMAX predictor presented the acceptable results. 

The performance obtained with the analyzed neural network and the step training strategy shows an effective 
improvement in the estimation of a flexible structure parameters. 

 These results are limited to the fact that the signals were simulated from 2DOF models. It is also remarkable the 
consideration of the external force in a single point of the mass in the applied models and the constant and equal values 
attributed to the spring and the damper elements. Still, the measurement errors limitations refer to the fact that the errors 
were simulated by the addictive Gaussian white noise added to the signal. 
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