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Abstract. The stability of a partially mobile thin liquid plane-parallel film between two gas or
oil phases is studied. The long wave approximation is used to analyze the influence of soluble
ionic surfactants and non-surface active background electrolyte on the increment/decrement
of fluctuations. The material properties of the corresponding multiphase flow and interfaces
are taken into account. The equilibrium state of the film is described by the classical DLVO
theory in which the Van der Waals and electrostatic disjoining pressures are included. The
fluctuation analysis of the electro-diffusion fluxes, velocity of the components, concentrations,
electric potential and film thickness give the analytical criteria for stability of the equilibrium
state. Numerical results show changes of the stability region with increasing surfactant
concentration and significant influence of the background electrolyte. The stabilizing effects
of the Gibbs elasticity, surface and bulk viscosities are demonstrated.. The results are useful
for control of the foam breakdown in the industrial systems.
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1. INTRODUCTION

The stability of thin liquid films is an important problem in diverse areas of science and
technology. Technological and biological examples include foam and emulsion stability
(Kralchevsky et al., 1997); displacement of crude oil by gas and foam from rock pores
(Ramamohan and Slattery, 1984); safety of light water cooled nuclear power plants (Lienhard
et al., 1978); the rupture of the tear film in the human eye (Lin and Brenner, 1982); etc. This
paper examines the stability of thin liquid film occurring between two drops or bubbles in a
dispersion stabilized by ionic surfactants in the presence of a background electrolyte (inorganic
salt).

The thin liquid film rupture is due to thermal fluctuations which lead to corrugations of the
film surfaces. These corrugations give rise to two forces: (i) capillary pressure, which tends to
resist any deformation on the surface, and (ii) disjoining pressure, which can amplify the



amplitude of the corrugations. Therefore, there exists a transition thickness at which the
characteristics of the waves change. For thicknesses smaller than the transitional one the film is
unstable and, as the amplitude of the wave increases, it ruptures.

The problem of film stability has been investigated by many authors. Early studies
attributed the film rupture to the onset of a thermodynamically unstable state during the
drainage process and the usual approach was to calculate the free energy of the film as a
function of its thickness (Frenkel, 1955). De Vries (1958) was the first to supplement the
thermodynamic studies of film stability with a kinetic treatment of the mechanism of rupture.
Further investigations reveald the importance of the interfacial tension, van der Waals and
electrostatic forces, density, viscosity ratio of the two phases and interfacial elasticity for
determining the film stability (see the review of Maldarelli and Jain, 1988). It was found that
for a thin film between identical phases there exist two modes of vibration of the film:
symmetric and antisymmetric. The symmetric long waves were shown to be responsible for the
film rupture. Ivanov et al. (1974) analyzed the stability of films containing low concentrations
of surface active species. Those authors included the effects of surface diffusion and surface
viscosity and demonstrated that the decrease in the critical thickness with increasing surfactant
concentration is due to surface viscosity.

Most of the publications in the literature (see the review of Danov et al., 1999) describe
the stability of plane-parallel films in the case of nonionic surfactants. In various applications
the bulk phase is a multi-component system of different kind of surfactants and background
electrolytes. The thermodynamics of such liquids and interfaces is studied by Kralchevsky et al.
(1999). In this work we present a solution of the stability problem of an equilibrium plane-
parallel thin liquid film between two bubbles when the continuous liquid phase is a complex
mixture of ionic and nonionic surfactants and background electrolytes.

2. PHYSICAL BACKGROUND

The stability of foams and emulsions depends on the stability of the thin liquid films
formed between the colliding particles. In the classical concept of dispersion stability, the so
called DLVO theory (see the review of Kralchevsky et al., 1997), the total interaction between
particles is supposed to be a superposition of van der Waals and electric double layer
interactions. The total disjoining pressure, Π , and the particle-particle interaction energy, U,
are presented in the form: Π Π Π= +vw el ; U U Uvw el= + . Π vw  is the van der Waals
attractive disjoining pressure, which leads to fast drainage and rupture of the films, and Π el  is
the electric repulsive disjoining pressure, which may counterbalance the van der Waals
attraction and stabilize the films. A typical disjoining pressure isotherm, ( )Π H , is depicted in
Fig. 1a. The maximum represents a barrier against coagulation, the primary minimum appears
if strong short-range repulsive forces (steric forces) present, and the secondary minimum is
usually small, but for larger drops could be deep enough to cause coagulation.

Thermodynamic equilibrium condition is reached when the total disjoining pressure, Π ,
equals the capillary pressure, Pc : Π = Pc . This equilibrium condition can be satisfied at the
three points shown in Fig. 1a. Point 1 corresponds to a film, which is stabilized by double-layer
repulsion. Point 3 corresponds to unstable equilibrium and cannot be observed experimentally.
Point 2 corresponds to a very thin film, which is stabilized by short-range repulsion (Newton
black film).

It is known from experiments that for low surfactant concentrations the equilibrium state 1
(Fig. 1a) is thermodynamically stable, but at high surfactant concentrations the mechanical
equilibrium in point 1 is unstable—the film ruptures, or Newton black film is formed. This



instability may be a result of thermal or mechanical fluctuations in the film shape (Fig. 1b),
which disturb the surfactant adsorption, concentration and surface potential. Then regions with
lower subsurface concentration and adsorption appear. In these areas the surface charge
density decreases and the van der Waals attraction prevails over the electrostatic repulsion.
Depending on the dissipation of wave energy due to the surface elasticity and viscosity, the
equilibrium may become unstable. The rupture can be prevented also by bulk and surface
diffusion fluxes, which tend to restore the equilibrium.

    

Figure 1 - Physical illustration of the system under consideration: a) a typical disjoining
pressure isotherm, Π  vs. H; b) fluctuation waves at film surfaces.

3. MATHEMATICAL MODEL

The problem for the stability of a plane-parallel, non-draining film, formed between two
drops or bubbles (Fig. 1b), is described in a cylindrical coordinate system, Orz, where the
bubble interface, S, is defined as z = (H+h)/2 and the middle plane is z = 0. In the literature
(Maldarelli and Jain, 1988) the long wave approximation is used for solution of the governing
equations. The general frame of this approximation is represented by the following
assumptions: small film thickness compared to the characteristic bubble radius; the wavelength
is of the order of the film radius, R; the fluctuation in the film thickness, h, is much smaller than
the wavelength and the film thickness. In order to solve the problem, a linear stability analysis
can be applied.

3.1 Equilibrium state

In the equilibrium state the velocity in the film is zero ( v = 0). The equilibrium
distributions of the ion concentrations in the bulk phase, ci , obey the Boltzmann law
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The electric potential, ψ, is related to the bulk charge density through the known Poisson
equation. In the case of equilibrium [Eq. (1)], for symmetric films, the following first integral
holds:
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where ε is the dielectric permittivity. The electro-neutrality condition for the solution as a
whole is equivalent to the Gauss law written for the surface charge density, ρs e, . At the

equilibrium thickness, H, it follows:

d

d z
qi i

i

n

s e
ψ π

ε
π
ε

ρ= ≡
=
∑4 4

1
Γ , at  z = H/2 .   (3)

In Eq. (3) Γi  are the adsorptions of the surface active ions at the interface, and of the
counterions or coions in the Stern layer.

In the classical DLVO theory the equilibrium condition is reached when the total disjoining
pressure is equal to the capillary pressure (see Fig. 1a). Here we will investigate the stability of
the first equilibrium thickness, where the steric interactions are negligible and
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where AH  is the Hamaker constant, σ  is the interfacial tension, and Rc  is the bubble or drop
radius. The first term in Eq. (4) is the van der Waals disjoining pressure and the second one
represents the electrostatic disjoining pressure which is equal to the osmotic pressure built
from the electric double layer (EDL) overlapping [the Langmuir formula for the electrostatic
disjoining pressure, see Kralchevsky et al. (1997)].

To close the system of equations (1)-(4) the respective isotherms for each species,

( )Γ Γi i s s s nc c c= , ,2 ,, ,...,1 , are used. The subscript “s” denotes the value of the parameter in

the contiguous film phase. The list of corresponding isotherms is given in a recent work
(Kralchevsky et al., 1999). Therefore, for any given kind of surfactants and added salts from
Eqs. (1)-(4) and respective isotherms we can calculate all parameters of the equilibrium state.

The dependence of the equilibrium film thickness, H, and the corresponding electric
potentials in the middle plane, ψm , and at the surface, ψ s , on the initial surfactant ion
concentration, c∞,1 , are plotted in Figs. 2a and 2b. Numerical results are computed for

dispersion system stabilized by sodium dodecyl sulfate (SDS) in the presence of different
amount of salt (NaCl). Both the surfactant and salt are symmetric (1:1) electrolytes. The
calculations are made by using the Frumkin adsorption isotherm and surface tension isotherm
which is appropriate for air-water interfaces. The values of the adsorption parameters are taken
from Kralchevsky et al. (1999). It is seen that the equilibrium film thickness, H, and the electric
potential in the middle plane, ψm , decrease with increasing surfactant concentration, c∞,1 .

The surface electric potential, ψ s , has a maximum which corresponds to the maximum
adsorption of the surface active ions on the surface. Addition of more surfactant results in



increasing counterion adsorption while the adsorption of the active ions remains constant. The
surface charge decreases which leads to decreasing surface electric potential. Adding salt
reduces the thickness of EDL and causes the electric potentials in the middle plane and on the
surface to decrease (Fig. 2b). The van der Waals attractive force does not depend on the
surfactant concentration. The background electrolyte decreases the electrostatic repulsion and
the equilibrium takes place at smaller thickness (Fig. 2a).

Figure 2 - Dependence of the equilibrium parameters on the surfactant concentration: a) film

thickness, H; b) electric potentials ψm  and ψ s . Rc  = 2 mm and AH = × −4 10 20  J.

3.2 Equations of motion and integrated mass balance for fluctuations

Since the film is thin and the wavelength is of the order of the film radius, the liquid
motion can be described by simplified Navier-Stokes equations. For displacements having
azimuthal symmetry, the dynamic equations for the disturbances are

η
∂
∂

∂
∂

∂ ψ
∂

2

2
1

v

z

p

r
kT c q

r
r

f

i i

f

i

n
= +

=
∑  , (5.a)

∂
∂

∂ ψ
∂

∂ ψ
∂

p

z
c q

z
c q

z

f

i i

f

i
f

i
ii

+ + =∑∑ 0  ,        (5.b)

In equations (5) η  is the dynamic viscosity, p f  is the fluctuation in the dynamic pressure, and
vr and vz  are the radial and axial components of the velocity generated by surface waves. The
superscript "f" denotes the fluctuations of the respective equilibrium parameters (bulk
concentrations, pressure and electric potential). From the continuity equation, ∇ ⋅ =v 0 , and

the Poisson equation it follows that the fluctuation in the pressure, p f , depends only on the
radial coordinate, r, time, t, and electric field (osmotic part of the pressure):
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where ( )p t rm
f ,  and ( )p t rr

f ,  are the pressure fluctuations in the middle of the film and in the
thermodynamic reference phase (where ψ → 0).

As we solve the stability problem at long wave limit the concentration in the bulk phase,
ci , obeys the Poisson-Boltzmann distribution. Hence, the fluctuations in concentrations caused
by surface waves are presented as:
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where ( )c r tr i
f
, ,  are the fluctuations in concentrations in the thermodynamic reference phase.

In order to simplify all equations below we introduce a new function, f i , which is the
solution of the following boundary problem at equilibrium:
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Using the bulk and surface mass balance equations for each component in the case of small
fluctuation Peclet numbers and long wave approximation the final linearized form of the
conservation of mass equations is obtained:
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with respective bulk and surface diffusion coefficients, Db i,  and Ds i, , the fluid velocity at the

surface, u, and ′′f s i,  denoting the value of d f d zi
2 2/  at z = H/2. Equation (9) explains that

the total convective flux of i-th species (the left hand side) is counterbalanced by the
corresponding total bulk and surface diffusion fluxes (the right hand side). Usually
(Kralchevsky et al., 1999) the coions do not adsorb in the Stern layer.

3.3 Boundary conditions

We restrict our attention to symmetric disturbances. We assume that the surface
displacements from the undisturbed state are small and thus the resulting disturbances

( vr , vz , p f ) may be assumed to be small too. With the above considerations, the linearized
kinematic boundary conditions at the interface, z = H/2, become v ur =  and 2v h tz = ∂ ∂/ .
The normal and tangential stress boundary conditions at z = H/2 transform to
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The influence of the surface tension gradient (capillary and Marangoni effects), the surface
viscosity (Boussinesq effect), and the influence of the electric part in the bulk pressure stress
tensor are taken into account in the normal and tangential stress boundary conditions [Eq.
(10)]. The following notations are used: η η ηs = +sh dil  is the total surface viscosity, defined
as a sum of the interfacial shear, ηsh , and dilatational, ηdil , viscosities; the derivative of the

disjoining pressure, Π, at the equilibrium is d d HΠ / , where the electric part of the disjoining

pressure has to be included in Π (see Section 2); σ a  is the adsorption part of the interfacial
tension (as it was shown by Kralchevsky et al. (1999) the total surface tension is a sum of the
adsorption part and the term coming from the non-isotropy of the electric pressure tensor in
the EDL).

From the bulk continuity equation and the kinematic boundary condition the integrated
bulk continuity equation for fluctuations can be written in the following form:
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In order to complete the formulation of the problem, using Eqs. (5.a) and (8), the
symmetry of the film and the kinematic boundary condition at the film surface, the distribution
of the radial component of the fluctuation velocity is calculated to be
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Substituting Eq. (12) into Eqs. (9) and (11), the mass balance and the continuity equation
become:
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The system of equations described in this section is a homogeneous system of partial
differential equations. It can be used to calculate the increment/decrement of the fluctuations
for given adsorption isotherms and equation of state.

4. INCREMENT/DECREMENT OF FLUCTUATIONS. STABILITY CRITERIA

For simplicity we assume also that the disturbances vanish at the film periphery, i.e.

h p v vf
r z= = = =0  at r = R. This assumption can be justified in view of the results of

Gumerman & Homsy (1975) who found that the conditions assumed at the edge of the film do
not significantly affect the predicted values of marginally stable film thickness.



Because of the cylindrical geometry and the conditions at the film ring, we can present the

solution in the following form: ( ) ( ) ( )h p u c h p u c e rr
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root of the zero order Bessel function, ( )J0 0α R = , and α −1 has a length dimension. In the

above equations the tilde denotes the amplitude of the variables and ω  is increment/decrement
of the fluctuations (stability factor).

After substituting the above solutions into the mass balance equation (13), for amplitudes
of the fluctuations in surfactant concentrations in the reference phase the following
relationships are obtained:

~
~

~
,c

u
b p dr i

f
i r

f
i= − +

α
, b

c
f

H
fi

i

i

i

i
s i s i≡ + ′′ − ′′′





∞Γ
γ γ

,
, ,2

, d
c

f
H

fi
i

i
s i s i≡ + ′′′











∞,
, ,ηγ

3

24
, (15)

where bi  and di  are known parameters calculated from the basic (equilibrium) state.
We solve the stability problem using the assumption for long waves, i.e. the wave length is

of the order of the film radius, λ ∝ R . Therefore the surface viscosity effects compared to the

elasticity effects can be neglected, [ ] [ ] ( )surf.  visc. surf.  elast./ /∝ <<ηs Gu RE 1. ( )∂Γ ∂/ ci eq

is much higher than the film thickness, H, for ionic surfactants. Hence, the effects from the
deviation in the surface electric potential and charge are proved to be also negligible. Then
after substitution of solutions the normal and tangential stress balance equations (10) are
simplified to:
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In Eqs. (16) χ , ξ , and ζ  are dimensionless parameters, which are calculated from the
equilibrium state. They are defined through the expressions:

χ ≡ + ′′′
=
∑1

1
kT d fi s i

i

n

,  , ζ
∂Γ
∂

= + ′′ + ′′′
= =
∑ ∑1

2 2

1 1

1

1

kT

H
d f

E

H c
d fi s i

i

n
G

i
i s i

i

n

, ,Γ

ξ
η

∂Γ
∂

= ′′ +








=
∑h

b kTf
E

ci s i
G

ii

n

, Γ1

1

1
 .  (17)

Substituting the above solutions, Eqs. (15), and (16) into Eq. (14), the stability factor, ω, is
calculated to be:
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The dimensionless mobility function Φ  is calculated from the equilibrium state. It takes into
account the influence of the interfacial properties on the surface mobility and is defined as
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In the case of high amount of surfactants the interfaces become tangentially immobile and
Φ = 1. For nonionic surfactants the second term in the right hand side of Eq. (18) is equal to
zero (the surface charge density is zero, i.e. ρs = 0). Then, for tangentially immobile
interfaces, Φ = 1, and nonionic surfactants, the well known result from the literature is

recovered (Ivanov, 1980), ( )ω α ∂ ∂ α σ η= −2 3 22 24H HΠ / / .

For illustration of the effects of ionic surfactants on the film stability we solve numerically
Eq. (18) for a foam system stabilized by SDS. The Frumkin isotherm parameters are taken
from Kralchevsky et al. (1999). The equilibrium parameters of the same system are presented
in Fig. 2 (solid line).

Figure 3 - Stability diagram: dependence of the increment/decrement, ωR D2 / , on the
surfactant concentration, c.

We plot the dimensionless stability factor, ωR D2 / , vs. surfactant concentration, c1,∞ ,

for different values of bulk diffusion coefficient of the surface active ion in Fig. 3. The negative
values of the stability factor, ω, refer to the region where the film is stable, and positive values
correspond to unstable films. It is seen that at very low surfactant concentrations the film is
stable. At such concentrations, first, the equilibrium film thickness is very large (see Fig. 2a)
and the van der Waals attractive force is negligible, and second, the electrostatic interaction is
very strong because of the almost fully overlapped EDL of the two surfaces (see Fig. 2b). With
increase of the surfactant concentration the film becomes unstable, and at even higher
concentrations - again stable, depending on the diffusion coefficient. It is important to note that
in contrast to the particular case of nonionic surfactant, in the case of ionic surfactant solution
the stability depends not only on the thermodynamic factors but also on the dynamic properties
of the system. The higher the diffusion coefficient, the more stable the foam film. This is due to
the faster diffusion process at higher Db1, which leads to faster restoring of the equilibrium.
The additional calculations show significant influence of surface diffusion coefficient and bulk
viscosity. Also the increase of the film radius makes the film more unstable.



5. CONCLUSIONS

A theoretical model for calculation of the influence of surfactants and background
electrolytes on the stability of plane-parallel, non-draining, liquid films is developed. It takes
into account the effects of the electric potential, the surfactant distribution, the surface
elasticity and viscosity, and the surface and bulk diffusion processes. The obtained relationship
for increment/decrement, ω , gives a possibility for estimating the rate of increasing/decreasing
of the fluctuation amplitude. The stability region depends not only on the derivative of the
disjoining pressure, but also on the fluctuations in the electric potential. The mobility of the
interfaces accelerates the growth of the corrugations.

The obtained results can be used for computation of the critical thickness of liquid films
stabilized by ionic surfactants and background electrolyte.
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