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Abstract. The drainage of a partially mobile thin liquid film between two deformed gas
bubbles is studied. The lubrication approximation and the assumption for small Peclet
number are used to formulate the mathematical model of the problem. The mass balance
equations for each of the species (ionic surfactant and background indifferent electrolyte) are
simplified to an integral mass balance equations in the film. The material properties of the
surfaces (surface viscosity, Gibbs elasticity, surface and/or bulk diffusivities, and surface
electric potential) are taken into account in the tangential and normal stress balances. A
simple analytical solution for a plane-parallel film is derived in the case of small deviations
from equilibrium. The numerical analysis of the governing nonlinear equations shows the
region of transition from partially mobile to immobile interfaces. A quantitative explanation
of the following effects is proposed: (i) the increase of the surface mobility with the bulk and
surface diffusivities; (ii) the role of the surface viscosity, compared to that of the Gibbs
elasticity; (iii) the significant influence of the meniscus on the film drainage due to the
increased hydrodynamic resistance; (iv) the effects of the surface potential and disjoining
pressure. The model can be applied to explain the stability of foams in practical applications.
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1. INTRODUCTION

The stability of emulsions and foams plays a crucial role in various chemical technologies.
The collision of two emulsion droplets or foam bubbles may be accompanied by a deformation
(flattening in the zone of contact) depending on the energy of interaction and hydrodynamic
friction between them. In general, the gap between two fluid particles can be considered as a
thin liquid film of uneven thickness. Hence, the detailed study of the surfactant influence on the
velocity of film thinning is a starting point for many publications in the literature.

The problem for a slow buoyancy-driven motion of two viscous drops towards each other
in pure liquids was investigated by Yiantsios & Davis (1990,1991). The authors studied the
influence of the viscosity and the van der Waals intermolecular attractive force on the velocity
of droplets approach. In most practical applications the emulsions and foams are stabilized by



surfactant dissolved in the continuous phases. Due to the process of film thinning, the
interfaces of the equilibrium surfactant solution are disturbed. The equilibrium is restored by
adsorption from the bulk phase and by surface convection and diffusion, driven by the gradient
of the interfacial tension (Marangoni effect) in an interplay with the interfacial viscous friction
(Boussinesq effect). Ivanov (1980) and Ivanov & Dimitrov (1988) proved that the surface
elasticity and viscosity strongly reduce the interfacial mobility and the viscous friction in the
droplets is negligible (the emulsion system behaves as a foam). In addition, when the distance
between the drops (bubbles) is small enough the intermolecular van der Waals, electrostatic,
steric, and other surface forces become operative. These forces significantly change the film
life time, i.e. the emulsion and foam stability. In addition, the meniscus decelerates the bubbles
approach for small films (Danov et al., 1999).

In various applications the bulk phase is a multi-component system of different surfactants
and background electrolytes. In a recent work Kralchevsky et al. (1999) proposed a
thermodynamic description of such liquids and interfaces, in which the effect of counterion
binding on the surface tension and surface potential of ionic surfactant solutions was explicitly
accounted for. In this work we present a solution of the drainage problem of a partially mobile
thin liquid film between two bubbles when the continuous liquid phase is a complex mixture of
ionic and nonionic surfactants and indifferent background electrolytes.

2. PHYSICAL BACKGROUND

                    

Figure 1 - Sketch of the film zone stabilized by an ionic surfactant solution containing
dissolved non-amphiphilic electrolyte (salt). The distance between the Stern layer

and the Gouy plane is exaggerated.

We consider a thin viscous liquid layer between two gas bubbles, which flows out due to
their approach under the action of the external force, F (see Fig. 1). When surfactants are
present in the solution, the liquid flow towards the meniscus carries away the surfactant
molecules. The surface convective flux, jc i, , of each component (i = 1,...,n) generates reverse

fluxes, which tend to restore the equilibrium distribution ( js i,  is the surface diffusion flux and

jb i,  represents the bulk diffusion flux in Fig. 1). The process of adsorption of the ionic

surfactants on the film interfaces is accompanied with an increase of the surface electric
potential, ψ s , and the charge density, ρs . In its own turn, the presence of surface electric
potential is related to the formation of an electric double layer (EDL) inside the film. The
charged surfaces repel the new-coming surfactant molecules (Fig. 1), which results in a
deceleration of the adsorption process. The diffusion transport of the surface active ions,
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counterions and coions is strongly affected by the electric field in the EDL. In the zone where
the EDL of the two film interfaces overlap, the electric potential distribution changes, and it
influences the diffusion processes in the gap region.

The non-uniform surfactant distribution along the surface leads to variations in the local
value of the surface tension, σ, which brings about the surface elastic force (Gibbs elasticity).
On the other hand, the adsorption layer and the EDL may undergo dilatational and shear
deformations during its motion, which produce surface viscous stresses. Finally, the surface
elements are under the action of the bulk stress caused by the liquid flow and electric potential
distribution in the film. In the gap region for small film thickness the intermolecular forces
affect the drainage through the disjoining pressure, Π. For slow motion (low Reynolds
number) the intermolecular, electric and viscous forces counterbalance the driving force, F, in
a given moment, t, (quasi-steady-state assumption is used—all parameters depend implicitly on
time through the local film thickness, H).

3. MATHEMATICAL MODEL

The problem for the drainage of symmetric films is described in a cylindrical coordinate
system, Orz, where the bubble interface, S, is defined as z = H(t,r)/2, the middle plane is z = 0,
and n is the unit normal at the surface S. In the literature (Ivanov, 1980; Ivanov & Dimitrov,
1988; Danov et al., 1999) the lubrication approximation is used for solution of the governing
equations. The general frame for this approximation is imposed by: small Reynolds and Peclet
numbers, small film thickness compared to the characteristic bubble radius, and small slope of
the interfaces. The mass, momentum and force balance equations are applied to solve the
problem.

3.1 Integrated mass balance and Poisson equations

In the lubrication approximation the leading order of the concentration in the bulk phase,
ci , obeys the local Poisson-Boltzmann distribution
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where ψ and ( )ψm t r,  are the electric potential in the bulk and in the middle of the film, k is

the Boltzmann constant, and qi , ( )c t rm i, ,  and ( )c t rr i, ,  are respectively the charge, the

concentration in the middle plane, and the concentration in the thermodynamic reference phase
(where ψ → 0).

Using the bulk and surface mass balance equations for each component in the case of small
Peclet numbers and lubrication approximation the final form of the conservation of mass
equations is obtained:
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Equation (2) expresses the fact that the change of the total mass across the film is compensated
by the bulk and surface convection and diffusion fluxes (see Fig. 1). In Eq. (2) u is the fluid



velocity at the surface, ( )v = v vr z,  is the bulk liquid velocity and Γi  is the adsorption of

surfactant ions on the film surfaces or the adsorption of counterions belonging to the Stern
layer. Usually (Kralchevsky et al., 1999) the coions do not adsorb in the Stern layer and their
adsorptions are practically equal to zero.

Using Eq. (1) the bulk diffusion flux, jb i, , in Eq. (2) can be expressed by the relationship

j D
c

r

q c

k T r
D

c

r

q

k Tb i b i
i i i

b i
r i i

, , ,
,

exp= − +






 = − −









∂
∂

∂ ψ
∂

∂
∂

ψ
 ,      (i = 1, ..., n),   (3)

where Db i,  is the bulk diffusion coefficient and the second term in the left hand side of Eq. (3)

(the so called “electromigration” term) accounts for the effect of the electric field on the
surfactant diffusion. In order to define the surface diffusion fluxes we have to specify the
mechanism of adsorption. It was proven in the literature (Ivanov & Dimitrov, 1988) that the
diffusion-controlled adsorption is more important than the barrier controlled adsorption for
film thinning. From a thermodynamic viewpoint this means that the total electro-chemical
surface potential of each species, µs i, , is equal to the electro-chemical bulk potential in the

contiguous layer (Kralchevsky et al., 1999). Hence, from Eq. (1) the total surface diffusion
flux can be written in the form
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where Ds i,  is the surface diffusion coefficient.

The electric potential, ψ, is related to the bulk charge density through the known Poisson
equation, which has the following first integral in the case of lubrication approximation
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where ε is the dielectric permittivity. The condition for electro-neutrality of the solution as a
whole is equivalent to the Gauss law written for the surface charge density, ρs e, . In the

lubrication approximation it reads:
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The assumption for diffusion-controlled adsorption allows us to close the system of
equations (1)-(6) with the respective isotherms for the different species:

( )Γ Γi i s s n sc c c= 1 2, , ,, , ... , . The list of commonly encountered isotherms is given in a recent

work (Kralchevsky et al., 1999). Therefore, if we know the velocity distribution, the problem
for the concentrations, adsorptions and electrical potential distributions is completed.



3.2 Integrated bulk continuity and tangential stress balance equations

In the case of a multi-component ionic liquid mixture the density of the electric force,
ρb e, E  ( ρb e,  is the bulk charge density and E = −∇ ψ  is the electric field), plays the role of a

spatial body force in the known Navier-Stokes equation of motion. For low Reynolds numbers
and small film thicknesses the pressure in the continuous phase, p, depends only on the radial
coordinate, r, time, t, and the electric field (osmotic part of the pressure):
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where ( )p t rm ,  and ( )p t rr ,  are respectively the pressures in the middle of the film and in the
thermodynamic reference phase (where ψ → 0). The substitution of Eqs (1) and (7) into the
radial component of the momentum balance equation leads to the following expression for the
radial component of the velocity in the framework of lubrication approximation
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The dynamic viscosity is denoted by η in Eq. (8). The electric force in Eq. (8) is a complex
function of z. In order to simplify all equations bellow we introduce the new function, f i ,
which is the solution of the following boundary problem:
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Hence, using Eqs. (8) and (9), the symmetry of the film and the kinematic boundary condition
at the film surface, one can calculate the distribution of the radial component of the velocity
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The boundary condition for the balance of the surface excess linear momentum takes into
account the influence of the surface tension gradient (capillary and Marangoni effects), the
surface viscosity (Boussinesq effect), and the influence of the electric part in the bulk pressure
stress tensor (see Kralchevsky et al., 1999). In lubrication approximation the tangential stress
boundary condition at the interface, utilizing Eqs. (6) and (10), is simplified to
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In Eq. (11) η η ηs = +sh dil  is the total surface viscosity, defined as a sum of the interfacial

shear, ηsh , and dilatational, ηdil , viscosities, and ′′f s i,  is the value of ∂ ∂2 2f zi /  at z = H/2.



From the bulk continuity equation ( ∇ ⋅ =v 0 ) and the kinematic boundary condition the
integrated bulk continuity equation can be written in the following form:
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If the surface equation of state (dependence of the interfacial tension, σ, on the
adsorption, for example see Kralchevsky et al., 1999) and the film profile, H, are known, Eqs.
(10)-(12) give the velocity, vr , the surface velocity, u, and the pressure, pr , distributions.

3.3 Drainage velocity and force balance

In the general case (Yantsios & Davis, 1990, 1991) the local velocity of surface approach
depends on the radial coordinate through the normal stress boundary condition. Then Eq. (12)
is a stiff nonlinear differential equation which is difficult to be solved numerically. The quasi-
steady state assumption is used in most of the publications in the literature to avoid this
problem—all variables depend implicitly on time through the local film thickness. Therefore,
the local velocity of surface approach does not depend on the radial coordinate and it is equal
to the so called drainage velocity, V H t= −∂ ∂/ . If we substitute Eq. (10) into Eq. (12) and
integrate the obtained result, the drainage velocity can be calculated as
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where f s i,  is the value of f i  at z = H/2.

The film between the bubbles thins due to the action of the external force, F, which in the
quasi-steady state approach is balanced by the hydrodynamic drag force and intermolecular
forces. Hence, in the lubrication approximation we obtain
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p∞  in Eq. (14) is the pressure at infinity in the meniscus region. Knowing the film profile and
the type of intermolecular interactions (van der Waals, steric, etc. disjoining pressure, except
the electrostatic disjoining pressure component), the external force can be connected with the
hydrodynamic drag force, Fhd , acting on the bubbles. It is important to note that the
electrostatic component of the disjoining pressure is already included in the osmotic term of
the pressure in the middle of the film.

The disjoining pressure isotherm, ( )Π H , for symmetric foam film stabilized by SDS is
plotted in Fig. 2. The Frumkin adsorption isotherm is used for calculation of the
thermodynamic equation of state and the relationships between subsurface and surface
concentrations of surface active ions and counterions, respectively. The adsorption coefficients
are taken from Kralchevsky et al. (1999). When the draining film reaches the thickness at
which the disjoining pressure equals the capillary pressure, the external force alters to zero.
Then the film reaches its thermodynamic stable equilibrium state and the drainage process



stops. Due to some thermal or mechanical fluctuations this equilibrium may become unstable
and the film may rupture or black spots may form. This problem is discussed in the other paper
presented on the conference (Effect of Ionic Surfactants on the Stability of Plane-Parallel
Film). The present study discusses the drainage process up to the equilibrium point (Fig. 2).

Figure 2 - Sketch of disjoining pressure isotherm, Π  vs. H

4. DRAINAGE VELOCITY OF PLANE-PARALLEL FILMS AT SMALL
DEVIATIONS FROM EQUILIBRIUM

The problem (1)-(14) has no analytical solution, due to the strong nonlinear dependence of
the surface tension and adsorption on the subsurface concentration. In the literature (Ivanov,
1980; Ivanov & Dimitrov, 1988; Danov et al., 1999) the following assumption is used: small
deviations from equilibrium

Γ Γ Γi e i i= +, δ  ,      c c ci e i i= +, δ  ,      c c cr i i r i, , ,= +∞ δ  ,      ψ ψ δ ψ= +e  ,  (15)

where the subscript “e” denotes the quasi-equilibrium values of the corresponding parameters
(at which the velocity is zero); with δ we denote small deviations from the basic state of the
parameters; c i∞,  is the concentration of the i-th ion at infinity in the meniscus region. The

quasi-equilibrium distributions of the concentrations, adsorption and electric potential are
described by equations (1), (5), (6) and the respective isotherms. The experimental results
(Ivanov & Dimitrov, 1988) showed that the complete process of drainage of a thin liquid film
has five stages, depending on the hydrodynamic and intermolecular interactions. However, the
time limiting factors for coalescence or flocculation are the approach of drops as non-deformed
spheres (earliest stage), and the drainage of the formed almost plane-parallel film between the
drops or bubbles. We will discuss below the latest stage of the bubbles approach—the plane-
parallel film thinning. In the case of symmetric electrolytes and plane-parallel films the exact
analytical formulas are given in Kralchevsky et al. (1997).

If we substitute the series (15) into the mass balance equations (2)-(4) using the velocity
profile (10) and integrating the result, a simple relationship for the gradient of perturbations in
the concentration in the reference phase can be derived:
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All coefficients α i , βi , and γ i  (i = 1,...,n) in Eq. (16) are known parameters. They are
calculated from the basic (quasi-equilibrium) state. The functions f i  and their derivatives are
defined through the equilibrium distribution of the electric potential.

The surface velocity is a linear function of the radial coordinate in the case of plane-
parallel film and it follows from Eq. (11) that the surface viscosity cannot influence the
mobility of the interface (see Ivanov & Dimitrov, 1988). We proved that the effect of the
deviation of the surface electric potential is also negligible. That is why the tangential stress
balance equation (11) is simplified to
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In Eq. (17) the derivative of the surface tension is calculated from the respective equation of
state and isotherms at equilibrium. After the substitution of Eq. (16) into Eq. (17) the final
form of the surface velocity is derived
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It is seen that the mobility of the interface depends on the parameter ε f . In the particular case

of one component nonionic surfactant solution the known formula for the so called in the
literature foam parameter, ε f , can be obtained from Eqs. (9), (16), (18)

1

ε f

sb
h

H
= +  ,      b

D

E

cb

e

≡








3η ∂
∂G Γ

 ,      h
D

Es
s≡

6η

G
 ,  (19)

where the Gibbs elasticity of the adsorption layer is ( )E
eG ≡ − ∂ σ ∂/ ln Γ . After the

substitution of Eq. (18) into Eq. (13) the pressure gradient as a function of the material
properties of the interfaces and the drainage velocity is derived to be

∂
∂

ε
ε

ηp

r

rV

H

r f

f
= −

+1

6
3  .  (20)

Then from Eq. (14) the final form of the hydrodynamic drag force becomes
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where R is the radius of the plane-parallel film and the electrostatic component of the disjoining
pressure for small deviation from quasi-equilibrium is given as in the classical Langmuir form:
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ψ . Therefore, the electrostatic interaction decelerates the

drainage of the film and depending on the surfactant and background electrolyte concentrations
it can become so large to stop the film drainage (v = 0), i.e. the equilibrium film thickness can
be reached (see Fig. 2).

The process of film drainage depends also on the foam parameter which takes into account

the mobility of interfaces. The dependence of the inverse foam parameter, ε f
−1, on the

surfactant concentration, c1,∞ , is shown in Fig.3. The computations are made for foam film

stabilized by SDS (without salt) with the following physical parameters: diffusion coefficients,

D Db s1 1
1055 10, , .= = × − m / s2  and D Db s2 2

106 06 10, , .= = × − m / s2 , and viscosity,

η = × −082 10 3. Ns / m. The Gibbs elasticity is very high for large surfactant concentration.
Therefore, the foam parameter is a large parameter and the interface is tangentially immobile.
Lower surfactant concentration and faster diffusion processes lead to higher mobility of the
interface. The foam parameter, defined through Eq. (18) depends on the film thickness and, as
it is seen from Fig. 3, the mobility of the interfaces increases for thinner films. For all film
thicknesses at high surfactant concentrations the inverse foam parameter tends to the bulk
diffusion parameter, b, because the interfaces become tangentially immobile and the surface
diffusion is negligible.

Figure 3 - Inverse foam parameter vs. surfactant concentration

From physical viewpoint the main conclusion in the case of small deviations and plane-
parallel films is that the electric potential affects the film thinning in two ways: (i) by slowing
down the diffusion of the surface active ions and by accelerating the diffusion of coins (these
affect the mobility of the interface in a very complex way); (ii) by increasing the disjoining
pressure trough the electrostatic repulsion term (the classical Langmuir approach).



5. CONCLUSIONS

A theoretical model for calculation of the influence of surfactants and background
electrolytes on the approaching velocity of two bubbles is developed. It takes into account the
effects of the surface viscosity, the electric and surfactant components of the surface elasticity,
and the surface and bulk diffusion processes. The surfactant ions, coions and counterions
distributions in the film phase obey the quasi-Poisson-Boltzmann distributions. The time-
limiting adsorption processes are shown to be diffusion controlled. The overlapping of the
EDL produces an additional electrostatic repulsion which stabilizes the film and decelerates the
process of film drainage. The model gives a complex system of equations which can be solved
numerically for a given film profile.

In the case of plane-parallel films and small deviation from quasi-equilibrium state (basic
state when the velocity is zero) the exact analytical solution of the problem is derived. It
presents a simple relation between the external force, film radius and thickness, and the foam
parameter. It is shown that the bulk distribution of the ions affects the drainage process
through the classical electrostatic disjoining pressure and the change of the surface mobility of
the film.

There have been numerous attempts to formulate simple rules connecting the foam and
emulsion stability with the surfactants properties: the Bancroft rule; Griffin’s criterion, which
introduces the concepts of the hydrophilic-hydrophobic balance (HLB); the phase inversion
temperature (PIT) rule of Schinoda and Friberg; etc. New interpretation of the Bankroft rule,
taking into account the dynamic processes of film drainage between the emulsion droplets, was
given by Ivanov (1980) and Kralchevsky et al. (1997). The obtained results can be applied in
order to generalize this criteria for solutions containing various ions.
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