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ABSTRACT

In this research an approach to volumetric determination of CMMs, which permits
mterpolation between measured points, has been developed. Mathematical and statistical
techmiques, such as Response Surface Methodology, have been used to represent the
relationship between each volumetric error component (Ex, Ey and Ez} at a point, within the
measuring volume, and the co-ordinates of the point (X, Yi, Z;). After fiting mathematical
models that represent the volumetric error components, it is possible to construct the
volumetric error map of a CMM under test. In this paper, the measured data obtained by
applying a modular space frame on a LK CMM are used to fit mathematical models that
represent each volumetric error component. Also, the parametric errors of that machine are
derived from the volumetric error data. In addition, the graphical representation of the
volumetric error data and that of the parametric errors related to the LK CMM are presented.
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1. INTRODUCTION

Over the past two decades, many methods for assessing the accuracy of co-ordinate
measuring machines have been proposed and applied. Basically, the methods can be
classified into three groups of common techniques. They are: transfer standard technique;
parametric calibration technique or synthesis method and kinematic reference standard
techmque.

Transfer standard technique. This is a technique by which a space structure of accurately
known dimension, such as ball plate and tetrahedron, is measured by the machine. The error
is defined as the deviation of the machine measurement from the true dimensions (Kunzmann
et al., 1993; Zhang, 1991). The transfer standard technique presents some limitations. Firstly,
it 1s difficult to manufacture mechanical artefacts that have the following properties:
lightweight, high thermal stability, easy calibration and non-expensive. Secondly, various
sizes of the standards are required for different sizes of machines, and the problems of storage,
handling as well as transporting may also arise (Pahk, 1991). Despite such limitations, the
transfer standard technique has the advantage of getting measuring data very similar to the



way by which the CMMs perform their measuring tasks. This technique 1s very useful, in
particular, when the CMMs incorporate software compensation system of geometric errors.

Parametric calibration technique or synthesis method. This is a technique in which the
structure of the machine is considered as a kinematic model, and then analysed using the rigid
body kinematics. Each error component, such as yaw, roll, pitch, straightness, squareness and
positioning error, 18 measured by conventional measuring equipment, for example, laser
mterferometer, electronic level, straight edge and square. In this technique, the parametric
errors can be combined to give the volumetric error components by using a geometric model
based upon rigid body kinematics (Burdekin, 1981; Pahk, 1991; Huang, 1995). The
parametric technique has the advantage of providing information for the error diagnosis of the
machine. However, this technique is time consuming, requires expensive equipment and
special skill to operate that equipment, for instance, laser interferometer system. In addition,
the error obtained from the parametric calibration technique may not represent the real error
components at the probe position. That can happen, especially, when the CMMs have a
software compensation system. This is because those error data may be changed or reduced
due to the software compensation (Pahk, 1991).

Kinematic reference standard techmique. This is a technique based on measuring
volumetric errors with some type of kinematic reference standard such as a ball bar (Bryan,
1982; Kunzmann, 1983; Burdekin, 1991). The kinematic reference standard techmique is
particularly simple for acquiring data. However, it is difficult to cover all of the measuring
volume as well as it is difficult to interpolate between the measured points.

It is worth noting that none the existing techniques, described above, meet all requirements
in terms of consumed time, simplicity to use and measure, diagnosis of errors, etc. Therefore,
a critical need exists in order to overcome disadvantages that existing techniques, to assess
accuracy of CMMs, present. In this regard, it 1s necessary to developed a new technique that
is capable of assessing the performance of modern CMMs that incorporate software
compensation systems. Also, the technique must be able to carried out both verification and
calibration of any type of CMM. Additionally, a new techmique should require a minimum
number of mechanical transfer standard and should be simple to use and measure.

2. PROPOSED NOVEL SPACE FRAME TO MEASURE VOLUMETRIC
ERRORS OF CMMs

In order to measure the volumetric errors of CMMs a novel form of space frame was
designed and manufactured in this research (Silva, 1997). This space frame has the form of a
tetrahedron which contains a sphere at each apex. The base of the tetrahedron comprises a ball
plate that contains three high accuracy spheres. Each tetrahedron contains three magnetic ball
links. A simple magnetic ball link comprises a link connecting magnetically to two spheres
whose sphericity is better than O.1pm.. One sphere is located on the ball plate and the other
one 1s at a space point where three links are connected together, as shown in figure 1. This
space frame will be referred to as a modular space frame as different configurations of
tetrahedron can be obtained easily and rapidly. The number of possible configurations for a
given three ball plate 1s a function of the number of available links of different length and 1s
given by the following equation:

!
(n—3)!

(1



where,

N=number of possible configurations.
n!= factorial of n.
n=number of available links of different length.
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Figure 1- Typical modular space frame

A mechanical artefact before being used to measure the volumetric error of a CMM must be
calibrated. Unlike other types of mechanical artefacts, the modular space frame developed in
this research 1s very simple to be calibrated. That is because the modular space frame itself
needs not be calibrated. The calibration process only involves in calibrating the elements that
define the modular space frame, i.e. magnetic ball links and ball plate. Then, a computer
program calculates the co-ordinates of the apices of the tetrahedron by using the calibrated
data. A calibration technique based on a laser interferometer system, which is capable of
calibrating both magnetic ball links and ball plate, was developed and applied in this research
(Silva, 1996).

3. BACKGROUND TO MATHEMATICAL MODELLING OF VOLUMETRIC
ERRORS OF CMMs

In this research an approach to volumetric accuracy analysis of CMMs has been developed.
The approach consists of a general mathematical model to represent the volumetric errors of
CMMs. In addition, the proposed approach is capable of deriving the parametric error
components from the volumetric error data. Response surface methodology has been applied
to fit a mathematical model to represent the volumetric errors of CMMs. Response surface
methodology, or RSM, is a collection of mathematical and statistical techniques that are
useful for the modelling and analysis of problems i which a response of interest is influenced
by several variables and the objective is to optimise this response (Montgomery, 1991). In
practice, most response surface methodology problems can be established by utilising either a
first order model such as:

g(X’ﬁ):ﬁu+Bl+ﬁ2+"'+ﬁt’(Xk (2)



or a second order model such as:

g(Xvﬁ):ﬁu"';ﬁiXi"';ABﬁXi?_'_; Z‘ﬁﬁXﬁXﬁ (3)

Then, a response Y can be written as

Y=03,+BX +B8,X.+.48, X, +¢ 4)

or
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Generally, the assumption of common error variance ¢~ is made, suggesting the use of
ordinary least squares for the estimation of coefficients [3’s. In this research, matrix formulas
for the method of least squares have been applied.

Fitting and analysing response surface is greatly facilitated by the proper choice of an
experimental design. Experimental design is referred to the process of planning the
experiment in such a way that appropriated data, which can be analysed by statistical
methods, will be collected resulting in valid and objective conclusions (Montgomery, 1991).
In this research, the experimental design used to collect data is defined by the points generated
by the modular space frame mentioned in section 2.

3.1 Fitting mathematical models to represent the volumetric accuracy

The general equation that represents each volumetric error component (Ex, Ey, Ez) can be
written either by using a first-order mathematical model, that is,

Ek(Xl’X27X3):ﬁko+lBlel+ﬁk2XZ+ﬁk3X3 (6)
or by using a second-order mathematical model, that 1s,

ER(XI’X2’X3): ﬁfw +B?\'1Xl +BR2X2 +ﬁk3X3 +ﬁk4X12 +ﬁ7\5X22 +BR6X32
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where,
k=x,yorz

In both equation (6) and (7) the coefficients [}’s are to be estimated by the method of least
squares where the basic formula is given by the following equation:

B =(XX")'X'Y, 8

where,



k=x, v or z and it is related to X, Y and Z direction , respectively.

Y= the vector of error component Ex, Ey or Ez in X, Y or Z direction, respectively.
X'= Transposed of matrix X

X= the matrix of independent or predictor variables X;, X; and X3 .

A computer program has been developed, in this research, to calculate the coefficients Py
of equations 6 and 7. The performance of this computer program was verified by attributing
synthetic data to the coefficients [3;; The vector of error component Yy was simulated by
considering the co-ordinates of the points generated by the modular space frame and the
synthetic values of the coefficients By;. Then, the computer program calculated the coefficients
By following the equation 8 and using the simulated values of the vector Yy along with the
matrix X that contains the co-ordinates of the points generated by the modular space frame.
The calculated coefficients were very close to the mput synthetic values in both the first and
second-order mathematical model as can be seen in tables 1 and 2, respectively. The small
difference between the synthetic and calculated coefficients might have been caused by
rounding errors.

Table 1 - Synthetic and calculated coefficients By; (equation 6}
( First-order mathematical model)

Bo B B> Bs
Synthetic ceefficients 4.000 -3.000 2.000 -5.000
Calculated coefficients 4.002 -3.001 2.001 -5.002

Table 2 - Synthetic and calculated coefficients By (equation 7}
{ Second-order mathematical model)

Ba B B Bs Ba
Synthetic ceefficients -5.000 1.000 3.000 2.000 4.000
Calculated coefficients -4.999 0.997 2.996 2.004 3.999

B B B B B,
Synthetic coefficients 1.000 2.000 -1.000 -2.000 -3.000
Calculated coetficients 1.002 2.003 -3.999 1.99% -2.999

The approach developed m his research was applied on a LK CMM. It is a computer
numerically controlled co-ordinate measuring machine of the moving bridge type. The
machine has XYZ travels of 600x500x400 mm, respectively. Basically, the machine
construction comprises: a granite surface table which has a matrix of threaded holes (M10)
which is used to locate and clamp components to be measured; X axis guideway that consists
of a granite straight edge bonded on the CMM table; Y axis guideway and a Z axis spindle
which are both made from ceramic material. The volumetric error data obtained from that
practical application are used to establish mathematical models to represent the volumetric
error components of the LK CMM. Also, based on the background described by Box (1978)
the adequacy of the fitted mathematical models is performed.

3.2 Results of the utilisation of RSM to represent the volumetric error components of
the LK CMM.



Two cases have been considered to represent the volumetric error component in the X
direction. Imitially a first-order mathematical model was fitted. Next, a second-order
mathematical model was developed. In both cases the residuals (Y - Yir) were plotted against
the fitted value, Yi;, obtained from the fitted mathematical model. Those plots are shown in
figures 3 and 4. By analysing the residual plots shown in figures 3 and 4, it was found that the
second-order model more adequately represents the measured data. The analysis of variance
concerning the second-order mathematical model, table 3, allows the F-test for significance
of regression to be established. The F ratio calculated is F=26.76 and from the F distribution
table the 95% point F(9,26,0.95) is equal 2.27. Since the calculated F exceeds the critical F
value in the Table 3, that is F=26.76 > 2.27, the overall regression is statistically significant.
Therefore, the second-order mathematical model has been selected to represent the volumetric
error component in the X direction. The regression equation can be written as follows:

Ex(X,,X,, X,)=-46296—30748X, — 2.8401.X, — 34202 X,
+1.4212X] — 2.5820X7 —0.0453.X; 9)
+0.8896 X, X, —2.1331.X, X, — L6848 X, X,

where,
X1, X2 and X3 are coded vanables

Table 4 presents the analysis of variance concerning the second-order model related to
Y direction. The F ratio calculated is F=14.50 and from the F distribution table the 95% point
F(9,26,0.95) 1s equal 2.27. Once the calculated F 1s greater than the critical F value in the
table, that is F=14.50 > 2.27, the fitted regression model is statistically significant. Thus, the
second-order mathematical model has been selected to represent the volumetric error
component in the Y direction. The regression equation is given as follows:

Eyv(X,,X,,X,)=44817—03694X, +25662 X, +2.7662 X,
+09425X] +12064 X7 —13123.X; (10)
—23131X, X, + 18896 X, X, +0.6940.X, X,

where,
X1, X7 and X3 are coded variables.

Table 5 establishes the analysis of variance related to second-order model related to Z
direction. The F ratio calculated, shown in table 5, is 12.94. The 95% point F(9,26,0.95),
which is obtained from F distribution table 1s 2.27. Since the calculated F exceeds the critical
F value in the table, that 1s F=12.94 > 2.27_ the overall regression is statistically significant.
Thus, the second-order mathematical model has been selected to represent the volumetric
error component in the Z direction. The regression equation is defined as follows:

Ez(X,,X,,X,)=—58200—-13586X, —2.4692 X, + 2.5301X,
+57018 X7 +0.0191.X7 +02181.X7 (11)
+27005X, X, —47821X, X, +01136 X, X,



where,

X, X5 and X3 are coded variables.

Table 3 - Analysis of Vanance - ANOVA (Ex)

Source of variance Sum of squares Degrees of freedom Mean square Fcal
Regression 328.1676 9 36.4631 26.76
Residual 354264 26 1.2626
Total 364.5149
Table 4 - Analysis of Variance - ANOVA (Ey)
Source of variance Sum of squares Diegrees of freedom Mean square Fcal
Regression 173.6991 9 19.2999 14.50
Residual 34.6074 26 1.3311
Total 208.5578
Table 5 - Analysis of Variance - ANOVA (Ez)
Source of variance Sum of squares Degrees of freedom Mean square Feal
Regression 99.3816 9 11.0424 12.94
Residual 22,1921 26 0.8535
Total 121.5282
. 3
c
2
Q
E_ E
o 5%
3 *
2 E
2 e w Koy
o
Or X e *
* * ¥ e K %
E3 * E 3
1R E §I€
b3
2L *
-3 Erad , , , ,
KP 0 ] B 4 0

Fitted Values Ex ( using RSM, 1st order model)

Figure 2 - Residuals plotted against fitted values, Ex { First order mathematical model)

E
2L
=
<]
g 1
E B N
=1 *
= ol e
@ E HSK ’s.ge S %ﬂf
w E E 3
1k E3
E
-2 L
E
a3 L e
4 . L . 1
-14 -12 -10 -8 -8

Fitted Values Ex { using RSM,

-2

2nd order model)

Figure 3 - Residuals plotted against fitted values, Ex { Second order mathematical model)




3.3 Representation of the volumetric error components of CMMs

Once the equations that represent the volumetric error have been established, it 1s possible
to construct the volumetric error map of a CMM under test. For example, by using the
equations 9, 10 and 11 the volumetric error components Ex, Ey and Ez can be calculated at
any point within the measuring volume defined by the modular space frame. Thus, the
volumetric error map can be obtained by using the regression equation that define the
volumetric error component and the co-ordinates (X;,Y;, Z;)} of points that define a particular
grid on a select reference plane within the measuring volume.

Response surfaces that represent the volumetric error components can be also plotted as
contour lines or contour diagram. This feature facilitates visualisation of the shape of a
response surface. In practice, the contour lines are obtained by slicing off portions of the
response surface at various horizontal levels and then projecting the outlines of the slices onto
the base which is defined by the selected reference plane (Box, 1978). Contour lines enable
one to identify which region of the selected reference plane the maximum and minimum
values of the volumetric error component are found. Also, by considering a line on the axis of
movement it is possible to derive parametric errors, such as positioning and straightness error,
from the contour line diagrams.

Figure 4 shows the response surface which represents the volumetric error component in
the X direction at plane Z=0. Figure 5 shows the contour lines that have been obtained from
the figure 4. From figure 5 it is possible to derive the positioning error, 3,(X), along the X
axis at Y=0. That is indicated by the intersection points between the contour lines and the X
axis. Also, from figure 5 the straightness error, ox(Y), can be derived. This error is obtained
by considering the intersection points between the contour lines and the Y axis.

Figure 6 shows the response surface that represents the volumetric error component in Y
direction at plane Z=0. Figure 7 shows the contour lines that have been obtained from the
figure 6. By using figure 7 it is possible to derive the positioning error, 0,(Y), along the Y axis
at X=0. That is indicated by the intersection points between the contour lines and the Y axis.
Also, from the figure 7 the straightness error, dy(X), can be derived. This error is obtained by
considering the intersection points between the contour lines and the X axis.

The response surface that represents the volumetric error component in 7, direction at
plane Z=0 is shown 1n figure 8. The contour lines that have been obtained from this figure are
shown in figure 9. The straightness error, 6z(X), can be derived from figure 9. This error is
obtained by considering the intersection points between the contour lines and the X axis.
Also, from the figure 9 the straightness error, 0z(Y), can be derived. This error is obtained by
considering the intersection points between the contour lines and the Y axis.
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4. CONCLUSION

The technique described in section 3 provides an efficient and practical method for
establishing the volumetric accuracy analysis of CMMs. This i1s because the contour line
diagrams facilitate the understanding of the shape of the response surface of each volumetric
error component. The proposed technique, to mathematical modelling of volumetric errors of
CMM, provides an efficient approach for measurement and analysis of the volumetric
accuracy of any type of CMM. It enables one to identify which region of the selected
reference plane the maximum and minimum values of the volumetric error component are
found.
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