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Abstract. The main objective of this paper is to propose an adaptive mesh refinement
process for mized finite element models in limit analysis. We use an ‘a posteriori ~ error
estimator based on a local directional interpolation error and a recovering procedure for the
second derivatives of the finite element solution. The mesh adaptation process proposed
gives improved results in localizing regions of rapid or abrupt variations of the variables,
whose location are not known a priori. We apply the above procedure to limit analysis
considering bodies in plane strain and with symmetry of revolution.
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1. INTRODUCTION

The main objective of this paper is to propose an adaptive mesh refinement process
for limit analysis, using a posterior: error estimator based on the local directional inter-
polation error and a recovering procedure for the second derivatives of the finite element
solution. The strategy presented herein is an extent of the one presented by Borges et
al.(1998) and Feijoo et al.(1997) where the error estimator and the adaptive process were
only defined for linear finite elements. We generalize the error estimator and the adaptive
procedure to include quadratic triangles.

The goal of the anisotropic mesh adaptation process, generated by a directional error



estimator, is to achieve a mesh-adaptive strategy accounting for mesh size refinement, as
well as redefinition of the oriented element stretching. In this way, along the adaptation
process, the mesh turns aligned with the direction of maximum curvature of the function.
This mesh adaptation process gives improved results in localizing regions of rapid or
abrupt variations of the variables, whose location is not known a priori (Peir$,1989). So,
we can obtain an accurate representation of shocks, boundary layers, wakes and other
discontinuities.

Limit analysis deals with the direct computation of the load producing plastic col-
lapse of a body - a phenomenon where, under constant stresses, kinematically admissible
plastic strain rates take place. Localized plastic deformations or slip bands are present in
most collapse situations. Accuracy in the numerical solution of limit analysis is seriously
affected by local singularities arising from these localized plastic deformations. In limit
analysis, a priori error estimate, as provided by the standard error analysis in the finite
element method, is often insufficient to assure reliable estimates of the computed solution
accuracy. This is due to the fact that it only yields information on the asymptotic error
behaviour and requires regularity conditions of the solution, which are not satisfied in the
presence of singularities such as the above mentioned ones. Those facts disclose the need
of an estimator which can a posteriori be extracted from the numerical solution.

Furthermore, for limit analysis, the classical three-node finite element, that use linear
interpolant for the velocity field, has strong tendency to lock, so that we only use it in
plane stress problems. The locking characteristics are important in plane strain and in
solids with symmetry of revolution. This is because the exact velocity is an isocoric field
when the Mises plastic function is used. In these cases, a curved triangular mixed element
was specially created to face the lock problem (Borges et al.,1996). For this element an
efficient adaptive strategy demands an error not necessarily piecewise constant by element,
just as was previously proposed.

In this paper, firstly, we discuss some issues of the adopted error estimation tech-
niques, by considering the derivatives recovery and the proposal directional error esti-
mator. Following, we present the theoretical framework of limit analysis. Together with
limit analysis applications, we also present an adaptive mesh refinement solution for an
interpolation problem in order to show that the proposed adaptive strategy using our
anisotropic error estimator recovers optimal and/or superconvergence rates.

2. ESTIMATORS BASED ON DERIVATIVES RECOVERY

In recovery based on error estimation methods the gradients and/or Hessians of
solutions, obtained on a given mesh, are smoothed and after that the smoothed solution
1s used in error estimation. It is well known that the derivatives of the wj; function is
superconvergent in some interior points of the mesh elements, that is, in these points the
derivatives of the finite element solutions exhibit higher accuracy than normally expected.
Taking advantage of superconvergent, the main idea of the proposed estimator is focused
on the recovering of the Hessian with a higher order of accuracy than that naturally
obtained from the finite element approximation. So, in order to obtain the proposed error
estimator, it is necessary to recover the Hessian matrix from the information given by the
finite element solution itself u,. Almost every algorithm to recovering the Hessian matrix
use first derivatives information. Recovering first and second derivatives are main issues
of the following sections.



2.1. The interpolation error as an indicator of the approximate solution

We present an anisotropic posteriori error estimator for the difference between a
given function v and a discrete function U € V}, which is a good approximation of u in 2
in the sense that

[ = Ull oy < Clluw = Tul| 1o g (1)

with IT : W??(Q) — V}, denoting an operator whose approximation properties are si-
milar to the Clément interpolation. Based on Eq.(1) and in accordance with Almeida et
al.,(1998), we assume that exists a constant C' such that

[ = unll o) = ClIHR(un(2)) (2 = 20) - (2 = 20)l| 10 (2)

where Hpg(un(z)) denotes the recovered Hessian matrix obtained from the information
given by the finite element solution uj,. This shows that the interpolation error in one
point z, where |x — x| is small enough, is governed by the behaviour of the second order
derivative in such point. Thus the interpolation error is not distributed in an isotropic
way around the point xg, i.e., the error depends on the direction = — xy and the recovered
Hessian matrix value in this point, Hg(u(x)).

The above result suggests the use of Eq.(2) as a directional error estimator in the
terminology used by Peiré (1989). Since the recovered Hessian matrix is not positive
definite it can not be taken as a metric tensor. As an alternative, Peir6 introduced the
metric tensor

G = QAQT (3)

where Q is the matrix of eigenvectors of the recovered Hessian matrix, the matrix A =
diag{| 1], |A2|} and |N|,i = 1,2, are the absolute value of the associated eigenvalues
(JA1] < [A2|). According to this definition, the metric tensor field G is at least positive
semi-definite. In particular, a zero eigenvalue poses no difficulty since it leads to infinite
mesh sizes that are inhibited by the element size limitation or by the finiteness of the
computational domain.

The error estimator introduced herein, instead of considering an error estimator as-
sociated to the element edge length, as proposed by Dompierre et al, (1995), uses another
one that provides a measure of the second derivative contribution in each element. Con-
sidering a given finite element mesh & of the domain 2, the error estimator at element
level T' € &, is defined by the expression

w={ [ Gz~ 20)- (- o0}’ (1

where (27 is the area of the element T and xy is the center of this element.
The global error estimator 7 is given by:

n—(Zn’%)% &)

Tex



2.2. First order derivative recuperation

Several approaches have been proposed, in the framework of the Finite Element
Method, in order to recover first derivatives (see for example Zienkiewicz & Zhu,1992).
Among them there is the Weighted Average which we briefly summarize.

The approach quoted Weight Average consists on turning the inter-elements dis-
continuous field Vuy into the continuous field Vguy,. This is made by employing the
same element basis functions used to construct u, to compute Vu,, and then adopting
a weighted average of the Vuy, computed on the elements surrounding a node N, as the
value Vguy(Xpy) of the recovered gradient in this node (Xy is the coordinate of node
N). The weight average is computed using weights given by the inverse of the distance
between the node N and the points of superconvergence of the gradient (the center of the
element in the case of linear triangles and the gauss point near midside nodes in the case
of quadratic triangles (Zienkiewicz& Zhu,1992)). The weights can also be defined by the
area of the elements surrounding the node.

Second derivatives can also be recovered by using the same approaches used for the
first derivative recuperation. In fact, taking V zuy, as a new field, we can reapply the al-
gorithm in order to find V z(V gup). The symmetric part of the approximation is retained
in order to ensure the symmetry of recovered Hessian matrix.

In order to approximate functions presenting strong variations in the derivatives the
adapted mesh turns to be oriented by means of the stretching of its elements in the
direction of maximum curvature of the function. Whenever this stretching is very large
may cause poor precision when computing weighted averages. To overcome this situation,
the original domain )4 is locally transformed into a standard unstretched domain £2%.. For
instance, when using mesh generators based on the advancing front technique (Fancello
et al,1990) this domain transformation is naturally choosed compatible with the domain
mapping which is part of the mesh generation algorithm. This is the procedure adopted
in the present work and is described in the following.

Considering the neighborhood of an arbitrary point IV, the mesh generation algorithm
tends to create triangular elements which are equilateral when viewed in the transformed
domain given by the following operator:

1
S(N) = W&@&-FW%@GQ (6)

where e;(N),i = 1,2 are the eigenvectors of the Hessian matrix H(u,(N)), h(N) is the size
in the ey direction and s > 1 is the stretching in the e; direction of an element generated
at node N. Those parameters are all dynamically defined along the mesh adaptation
process. The selection of these parameters is discussed in the next section.

Consequently, each point M belonging to some element adjacent to a node N of the
mesh mapped in a point x,, given by:

xy = S(N)(Xar — Xn) (7)

where X/, X and x,; denote the coordinates of the point N e M before and after the
mapping, respectively.



BOX 1 - First Derivative Recovery Algorithm
1 - Define the patch associated to node N
2 - Build the metric tensor S(NV), from information about the mesh shape
around of the node N, defined by the known parameters s(N) , h(N), e; and es.
3 - Transform all of the elements of the patch .
4 - Compute the gradients graduy, in each one of the transformed elements.
5 - Using the recovering algorithm, compute gradgu,(N).
6 - By Vgun(N) = ST(N)gradguy(N) transform the gradient gradgus(N) to the
original domain.

3. ADAPTIVE PROCEDURE

As mentioned before, it is taken as a local error indicator at element level, ny, the
value expressed by Eq.(4). Denoting 7 the global error indicator in the triangulation Sy,
given by Eq.(5), the main idea to adapt the mesh, according to this error indicator, is
to find a new mesh .1, with a given number of elements Nel. The new finite element
mesh is generated trying to produce a uniform distribution of the local error estimator
over all elements.

As already said, our remeshing algorithm is based on the advancing front technique.
In this technique, the mesh generator tries to build equilateral triangles in the metric
defined by the variable metric tensor S which, at node N of the actual mesh, takes the
value defined by Eq.(13). To evaluate the parameters we proceed as follows (see Feijéo et
al. 1997, for more details).

1. For each element compute the local error 7y and then compute the global error 7

2. Given a number of elements Nel in the new adapted mesh, the expected local error
indicator is given by

E3 /'7
pr— 8
7 ~ (8)

3. The decreasing or increasing rate of the element size is estimated by

Br = <Z—T> (9)

From the rate Sr, computed at element wise, different approaches can be selected
to find the distribution at nodal level. Those approaches can be the same used to
perform the derivatives. This rate at nodal level is noted G(N).

4. The size of the new element, to be generated at node N, is hyy1(N) = G(N)he(N).

Two threshold values for the computed new element size are used

These two parameters are used in order to ensure a progressively mesh adaptation
to the solution. Moreover, L represents the characteristic length of the domain €2.



5. The stretching factor s at node N is defined by s(Ny) = \/|A2|/| 1], where [A| < [\
are the absolute eigenvalues of the Hessian matrix H(u,(N)). This stretching factor
must bounded in order to ensure that the length of the element in the direction
e1, shy.1, must be no greater than the characteristic length L of the domain €2, i.e.,

S S L/hk+1.

6. hgi1 — scaling. Due to the limitation on the values of h and s the number of
elements in the new adapted mesh may be different from the expected Nel. To
force the equality between these two numbers, the element size h at nodal level,
must be scaled. In particular, the number of elements in the new finite element
mesh and the scaled value for the element size are given by

4 r 2 Nelpew

Nelpew = —= | —=dS) d Ry,
‘ V3 Ja sh? a S Nel

X hk—l—l (11)

The adaptive strategy described is repeated until the error estimator in the mesh Sy,
relative to the solution of the problem analyzed, becomes lower than a given admissible
relative error 7.

4. LIMIT ANALYSIS

Under the assumption of proportional loading, the limit analysis problem consists in
finding a load factor a such that the body undergoes plastic collapse when subject to the
reference loads F' uniformly amplified by «. In turn, a system of loads produces plastic
collapse if there exists a stress field in equilibrium with these loads, which is plastically
admissible and related, by the constitutive equations, to a plastic strain rate field being
kinematically admissible. Thus, the limit analysis problem consists in finding a € R, a
stress field T € W', a plastic strain rate field D? € W and a velocity field v € V such
that

D’ =Dv, weV (12)
'/Z;T-Dv dB =« {(/L;b-vdb’ + '/TT'UdF}, YoeV (13)
T eP={TeW | f(T)<0, VzeB} (14)
DP =V f(T)A (15)
f-A=0, A>0 and f<0 (16)

We explain, in what follows, the above notation and the meaning of these relations.
Equation (12) imposes that the collapse plastic strain rate is related to a kinematically
admissible velocity field v by means of the tangent deformation operator D. The Principle
of Virtual Power, Eq.(13), imposes the equilibrium of the stress fields with a given body
loads ab and surface loads a7 prescribed in region I'; of the body.

For elastic ideally-plastic materials the plastic admissibility of stress fields is defined
by the set P, as in Eq.(14). The admissibility function f is a m-vector field, comprising in



each component a plastic mode. The inequality in Eq.(14) is understood as imposing that
each one of those components f; is non-positive. The constitutive relation is expressed
by the normality rule Eq.(15) and complementarity condition Eq.(16). In Equation (16),
V f(T') denotes the gradient of f, and A is the m-vector field of plastic multipliers. Also,
in Eq.(16) the inequalities hold component wise.

The discretized version of the limit analysis formulation leads to a finite dimensional
problem that can be seen as a discrete version of the Eqs.(12-16). A Newton-like strategy
for solving this discrete problem is described by Borges et al., (1996).

BOX 2 - Adaptive Strategy for Limit Analysis
Repeat
1 - Apply the Newton-like strategy for solving the discrete limit analysis.
2 - Choose the control variable and compute the local estimator error 7y
and the global error n
3 - For a given Nel, for each node of the mesh 3y estimate n*, hy 1 and sg1.
4 - Scale hyyq
5 - Generate a new mesh Sy .

Until 5, < 7{||Uh||L2(Q)+77k}%

The choice of a variable to be used to control the adaptive process is not obvious. To
capture the discontinuities, the natural choice is one of the components of the velocity
vector field, provided that we can estimate in advance which component is suitable to
this aim. However, this is not an easy task for a general problem. Unlike the velocity
field, the scalar field of plastic multipliers may be used as control variable without the
previous disadvantage. Because we observe in Eq.(15), that & is positive only when
the function f is zero, that is, when the stress is on the yield surface. So, the plastic
multipliers clearly indicate the region where localized plastic deformations or slip bands
are present. As a consequence, the local singularities arising from these localized plastic
deformations are also detected in this way. Based on this argument, the scalar field of
plastic multipliers appears to be a good choice as control variable and is adopted for the
most of the applications.

5. NUMERICAL APPLICATIONS

This section is devoted to numerical applications using the proposed mesh adaptive
strategy. Before we apply the adaptive procedure for Limit Analysis problems, we select
a test case in order to analyze the performance of the proposed adaptive mesh refine-
ment process. This comparison will be allow us to select the most appropriate recovery
procedure for our particular application.

5.1. Test case

We adopt an initial coarse mesh with 25 nodes and 32 elements, as shown in Fig.1. As
an approximation for the function analysed we adopt the finite element linear/quadratic
interpolant uy,, defined in the triangle T' € Sy, i.e. up(zy,yn) = u(zn, yn), where (xy, yn)
are the coordinates of the nodal point N in the finite element mesh Sj. All the adaptive
process was performed considering an expected number of elements in the new adapted
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Figure 1: Teste Function - T3/T6 - Linear/Quadratic Triangles
ID/A - Inverse Distance/Area recovery procedure

mesh (Nel) twice the number of elements in the preceding one. The threshold values
adopted for the new element size, as defined in Eq.(10), are L = 0.5 and a = 0.05.

By using a graphic in log X log scale, we present in the Fig.1 the global error n versus
the total number of elements. We observe a good convergence rate for all the estimators
plotted. The improvement in the convergence rate, by the adoption of stretched finite
elements, becomes clear from the analysis of the plotted results.

In the same figure, we also present the mesh, the isovalues of the function and the
distribution of the local error in the initial steps and after eight steps of adaptation. We
can observe a fine homogeneity obtained in the error distribution.

5.2. Limit Analysis application - Frictionless extrusion through a square die.

We have simulated a plane strain frictionless extrusion with reduction of 1/3 and
a Mises material. Because of the symmetry, we model only the upper half with the
dimensions shown in Fig. 2. Lubliner,(1990), gives the exact solution p = 1.97900 oy
for the piston pressure at collapse. The analytical collapse mechanism presents localized
deformation in the form of slip bands, as shown in the top of the figure.

As shown in Fig. 2, the plastic multipler field, used as the control variable, is effective
as a controller for the error estimator. The isovalues for the plastic deformation and local
error show that the proposed procedure is also effective in capturing the localized plastic
deformation. Indeed, it increases the nodal points of the mesh only near the region where
the discontinuities take place, as well as it constructs elements which are aligned and
stretched in the direction of slip bands.
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Figure 2: Frictionless extrusion through a square die.

6. CONCLUSION

The adaptive technique proposed shows to be appropriated to capture discontinuities
arising from the localized plastic deformations during plastic collapse, and as a conse-
quence, it deeply improves the numerical evaluation of the collapse load. The numerical
applications confirmed the feasibility of process, that is, the computation of the error
estimate was less expensive than the calculation of the numerical solution. In all studied
cases the time spent in the adaptive strategy was lower than 1% of the total time spent
in computing the solution of the problem.
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