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Abstract . This paper presents a boundary element analysis of the contact mechanics
between steel bearings with different ceramic coatings and thicknesses. The physical contact
between the spherical bearings, and between the bearings and other components, makes the
problem geometrically nonlinear such that an iterative procedure of solution is required.
An efficient azisymmetric BEM formulation has been developed for this purpose which
incorporates features such as subregion modelling and a fast iterative solver.
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1. INTRODUCTION

The useful life and reliability of mechanical components such as steel bearings can be
improved by using protective overlay coatings of more resistant materials. This protection
is fundamental to reduce wear at the surface of these non-conforming contact structures
where localized high stress concentrations are usually found.

The lifetime of the coated body is certainly extended but conventional surface wear
will no longer be the main reason for discarding the object. Detachment and fracture of
the coating become the most frequent failure processes. Both stem from the combination
of specific stresses and the coating properties.

Although intrinsic and thermal stresses are inherent from the coating manufacturing
process, in the present work, stresses are restricted to those originated from the application
of external loads. Also, linear elastic analysis and Coulomb friction law are adopted.

A few analytical methods for homogeneous contacting bodies exist, however, their
application to layered materials is not appropriate. Chen (1971) and Gupta and Walowit
(1974) developed numerical procedures using integral transforms for stress computation
in layered media under specific conditions.

Djabella and Arnell (1992) used the Finite Element Method to analyse contact
stresses in a single layer coated system. Despite using a powerful tool like FEM their
contact model was of limited applicability since a Hertzian pressure distribution was
employed to simulate the contact phenomena. Schwarzer et al. (1995) used a similar
model and compared their results to available analytical solutions. Ahmed (1997) also



used FEM to perform a linear elastic frictionless contact analysis between two bearings,
one of them being layered.

The Boundary Element Method is a suitable alternative technique to analyse linear
elastic contact problems. It has two particular advantages over other methods: 1- only the
boundaries need to be modelled; 2- required stresses are calculated with the same level of
accuracy of displacements, an important feature when high stress gradients are present.
Abdul-Mihsein et al. (1986) developed an axisymmetric boundary element formulation
for contact mechanics and successfully analysed conforming and non-conforming contact
problems. In the present study a similar formulation is used with subregions to model
the different material layers. Also, an alternative load increment technique (Man et al.,
1993) is employed along with a fast solver routine (Ezawa & Okamoto, 1989).

2. AXISYMMETRIC BOUNDARY ELEMENT METHOD

Let the two-dimensional body B in Fig. 1 rotate 360 degrees about the z axis. An
axisymmetric geometry under an axisymmetric load is formed where r and 6 are the radial
and hoop directions. All displacements and stresses are constant for any value of # and
this type of problem can be more efficiently analysed by simply considering the 2-D body
B instead of the whole 3-D domain. As a result of this axisymmetry, directions r and z
are sufficient to define the problem.
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Figure 1: a) The axisymmetric problem representation and b) the potential contact area

The development of a boundary element formulation for this class of problem involves
some algebraic manipulations and the result is comparable to a 2-D formulation with a
more complex fundamental solution. One possible approach for deriving it consists on



transforming the 3-D BEM formulation from cartesian into cylindrical coordinates and

integrating all terms with respect to the hoop direction (0 to 27). A detailed discussion

of this procedure and another possible approach has been presented by Becker (1986).
The axisymmetric boundary integral equation is of the form
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where C,.., C,.., C,, and C,, are constants which depend on the geometry at &, u, and u,
are the radial and axial displacements, t, and ¢, are the radial and axial tractions, & is
the point where the ring unit load is applied, x is the integrating field point and U and
T are the axisymmetric displacement and traction kernels, respectively.

The displacement kernels are
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where r¢ and ry are the radial distances from the source and field points to the axis
of symmetry, z¢ and zx are the axial coordinates, K; and K> are the complete elliptic
integrals of the first and second kind and the constants C;, Cs, C3 and C} are defined by
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where F is the Young’s modulus of elasticity, and v the Poisson’s ratio.
The expressions for traction kernels can be directly obtained from Hooke’s law where
they are written in terms of the previous displacement kernels and their derivatives,
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where n, and n, are the unit normal components at x. Expanded expressions for the
traction kernels are quite lengthy (Becker, 1986) and their numerical evaluation demands
an accurate computation of the elliptic integrals (Abramowitz & Stegun, 1965).

At first glance, one may think that when the source point lies on the axis of symmetry
a singularity appears since r¢ — 0. However, expanding the kernels U and 7', and then
simplifying, expressions identical to the 3-D ones are obtained, as expected.

The BEM basically consists on discretizing the boundary of the domain with elements
of certain geometry which contain nodal points. In the present problem these points rep-
resent either unknown or prescribed (usually two of them) nodal values of displacements
and tractions. An appropriate choice of interpolating functions allows the computation
of these values at other parts of the element.

Equation (1) is applied at each nodal point according to the boundary discretization.
A discretized system of equations is obtained where integrals of the kernels U and T over
each element must be computed. Two types of integrations will appear: non-singular
and singular. The first ones are straightforward (Gauss quadrature) and the second
require different treatments depending on which kernel is being integrated. The singular
behaviour of kernel U is similar to the 2-D one. Normal integration is carried out except
for the singular logarithmic term, embedded in the elliptic function K7, which is integrated
with Gauss-Log quadrature. Improper integrals of kernel 7" plus the coefficients C,.., C,,,
C., and C,, are calculated combining two techniques: rigid body movement along the z



axis and a particular choice of stress conditions applicable to any type of problem (Becker,
1986).

A fully-populated system of equations Sy = b is finally obtained where y contains
the unknown boundary values of displacements and tractions in directions r and z, S is
the coefficients matrix where each term corresponds to an element integration and b is
the independent vector resulting from the multiplication of integrated terms by associated
prescribed values.

3. CONTACT PROBLEM AND IMPLEMENTATION

Consider a non-conforming type of contact (Fig. 1) between two axisymmetric elastic
bodies subject to external loads and constraints. Compressive and shear forces are trans-
mitted through the contact area setting the whole system in equilibrium. Particularly,
in cases where friction is negligible, tangential (shear) stresses are equal to zero. The
final extent of the contact area is not known a priori and depends on the magnitude of
the applied external forces. This load dependence of the problem makes it nonlinear and
an iterative procedure is required for its solution. Furthermore, the presence of friction
implies the development of shear stresses whose magnitudes may lead to relative tangen-
tial displacements at the contact interface. Therefore, for the correct evaluation of these
stresses, it is necessary to have the external loads applied incrementally.

In a contact problem at least two bodies are involved and their boundaries can be
subdivided into non-contact areas and potential contact areas, as shown in Fig. 1b. The
non-contact areas, after discretization, are conventionally composed by nodes with two
prescribed values and two unknowns each. On the other hand, the potential contact areas
(name given since the area of contact is not known a priori) are discretized matching the
nodal points of each contacting body, forming contact node pairs with 8 unknown variables
each (u,, u,, t,. and t, for each node). The discretized boundary integral equation (1) is
applied twice (two directions) in each nodal point of the system so an extra 4 equations
for each contact node pair is necessary to have a well-defined mathematical formulation.
These extra contact equations must account for the equilibrium and continuity conditions
between bodies at the contact interfaces.

At any step of the load incrementation history the potential contact area is formed
by two zones: the separated contact zone and the effective contact zone. Node pairs in
the first zone are separated while in the second they are joined. The second zone increases
as the load increases and may also be partitioned into slip and stick (friction must exist)
regions. Given a load step, the slip region is composed by contact node pairs that have
experienced a relative tangential displacement while at the stick region node pairs have not
experienced the same sort of relative displacement. At each load step a new configuration
for the potential contact area will exist and a different group of contact equations must
be applied. The set of additional equations for each node pair (e.g. pair ab), depending
on its contact condition status, is shown in table 1 where n and t are the local normal
and tangential directions at the contact nodes and p is the friction coefficient.



Table 1. Contact Equations

Status

Equations separate slip stick
Equilibrium [t —t0=0 |t¢—t0=0 [t¢—t'=0
tr—th =0t —th =0 [t2—tb =0
Compatibility | t¢ =0 9+ ptt =0 | uf +uf =0
tn =0 ul +ul =0 | u® +ub =0

In a non-conforming contact problem the initial configuration is simply an effective
contact zone defined by a point and zero applied loads. When the load is applied and
gradually increased the point contact becomes an area of contact whose typical char-
acteristic is a boundary with slipping traction conditions in the vicinity of a separated
zone with traction free conditions, as observed by Hertz (1896). Once the discretization
is introduced the contact interface is represented by several linear elements and contact
node pairs. One of these pairs will represent the initial point contact configuration and
by incrementing the load other pairs will join. The most desirable situation is to have,
at any load step, a pair of nodes at the edge of the effective contact area in order to
guarantee proper traction continuity. However, the nonlinear relation between load and
contact area makes it impossible to foresee the necessary load increments, so to accom-
plish this requirement, the fully incremental loading technique is implemented. The basic
idea of this technique is to use a linear extrapolation function to obtain a very close to
zero normal traction value at the edge of the effective contact area.

Consider a pair of linear contact elements formed by two contact node pairs at its
edges. One of the node pairs is joined at the edge of the current contact area and the
other pair is the next one to be joined once the load is incremented. The applied load at
this stage is aP (0 < a < 1) and the necessary increment AP for this task is required.
The second pair of nodes is set to slip contact conditions, the new edge of the contact
area. Initially, an arbitrary load BP (8 > «) is applied and a normal traction value ¢}
is obtained. Afterwards, another arbitrary value vP (v > f3) is applied to produce ¢2.
Using these values and an extrapolation formula the required load increment to achieve
t, very close to zero can be calculated from AP = (6 — o) P where

1
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A single application of this procedure is usually sufficient to get ¢, = 0, unless the dis-
cretization is not refined enough. Another particularity is that for every different load
value (BP,vP or 6 P), only the independent vector of the system of equations is changed.
Therefore, using an LU solver, once the system decomposition is made, just the backsub-
stitution phase needs to be repeated to solve the system for each trial load.

The number of incremental load steps is equal to the number of contact elements to
be joined. The higher the number of contact elements the smaller the load increments,
the better the accuracy and longer the computational time. At each step different contact
equations apply and a new LU decomposition is necessary. Performing this task for each
step is very expensive. However, provided the number of changed contact equations at
every step is very small compared to the number of equations in the system (that is
the case since just one element per step is brought into contact) a special scheme to
obtain the system solution for the new configuration, based on the Sherman-Morrison-




Woodbury formula (Press et al., 1992), can be employed. Ezawa et al. (1989) used this
solution method very efficiently in a similar type of contact analysis.

As mentioned before, a stick-slip partition may exist in the effective contact area
depending on the friction and tangential traction values. At the end of every load step,
new contact traction values will develop and tests must be performed to check whether
the assumed contact status at the beginning of the load step is still valid at the end of
the load step. If not, the contact status is corrected and the iteration step repeated. The
following violation test for every new solution is applied to all contact node pairs,

gap®™ = gap?® — (uy, +uy)
separation >0 (12)
joined <0
2]
stick | < |ut,| (13)
slip | > |pt]

where gap® is the normal gap at the contact pair ab and gap$® is the initial one.
The iteration process terminates if either all contact node pairs have already joined
or the total applied load is greater than the prescribed one.

4. COATED BEARING ANALYSES

Consider a ceramic coated steel bearing of radius R = 12.7mm and variable coating
thickness w in contact with a steel cylindrical foundation of radius 4R and height 6 R, as
shown in Fig. 2. A vertical load P is applied at the top of the bearing, along its axis

of symmetry, compressing it against the cylinder. The steel properties are defined by
E, =207GPa and v, = 0.3.
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Figure 2: Coated bearing over an elastic cylinder.



In order to validate the formulation this problem is initially analysed without friction
or coating and compared to analytical results. Stress values at the cylinder along the axis
of symmetry and close to the contact area are shown in Fig. 3 for a load P = 128.3N. An
excellent agreement with the Hertzian solution is achieved, with a relative error generally
smaller than 1.0%. At the left side of Fig. 4 the computed results for the normal pressure
along the contact area for several load steps, up to P = 128.3N, are plotted. The results
for the last step are also successfully compared to the analytical ones. At the right side of
Fig. 4 the same analysis is performed with friction p = 0.01. It is interesting to observe
that normal traction values are not different from those from the frictionless case, as well
as the growth of tangential tractions with the increasing load. In this particular case no
slip regions were developed in the contact area despite the small friction value.
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Figure 4: Normal and tangential tractions growth in the contact area

Three coating thicknesses (wl = 0.1mm, w2 = 0.2mm and w3 = 0.4mm) and two
different ceramic materials ( a)E. = 2E; and b)E. = 4E;; v. = 0.3) were employed in the



next set of analyses. The bearing was pressed against the cylinder until a contact area of
radius 0.202mm was formed. Stress values at the bottom of the bearing along the axis of
symmetry are compared in Figs. 5 and 6 for several combinations of coating properties.
Only o, and o,, are plotted since at the axis z the shear stress 7,, = 0 and the hoop
stress ogg = Opp.

It can be seen in Fig. 5 that the normal stress values o, are consistent for all cases.
The less rigid bearing without coating (w0) has smaller stress values while the most rigid
one (w3b) has higher values. The same pattern is observed when comparing bearings of
same coating thickness but different elasticity modulus.

In Fig. 6 o, is plotted for three bearings with same material but different coating
thicknesses. The results are compared to the zero coating case and higher stress values
are obtained. As expected, o, presents a discontinuity at the coating/substrate interface.
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Figure 5: 0., along the axis of symmetry at the bottom of the bearing
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Figure 6: 0., along the axis of symmetry at the bottom of the bearing



5. CONCLUSIONS

A boundary element formulation has been developed for the investigation of contact
stresses in layered axisymmetric bodies. A fast solver routine and the fully incremen-
tal loading technique were implemented to speed up the analysis and guarantee proper
traction behaviour at the edge of the contact area, respectively.

Results from the analysis of homogeneous bodies compared very well with analytical
solutions. Coulomb friction was introduced and the development of tangential tractions
was observed. Different coatings over a steel bearing were analysed and consistent stress
values near the contact zone were obtained.
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