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Abstract. This work presents an Active Structural Noise Control method, ASNC, for the mid-
frequency range. This control approach aims to attenuate the modes of a structural system
that are source of acoustical noise. Called Band-Limited H∞  Controller, this approach allows
to design a reduced order H∞ controller to attenuate only noise radiating modes. This
controller has the characteristic of keeping the dynamics of the residual modes unchanged,
including a robustness characteristics with respect to the residual dynamics in the design.
Therefore, by adding a robustness requirement with respect to parametric uncertainties, the
performance of the closed-loop system is preserved under variations of the natural frequency
and damping of the controlled modes. This approach is tested in a real experiment with a
plate.
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1. INTRODUCTION

The techniques to actively suppress noise are usually related with the feedforward
approach and to the adaptive filter theory. This approach, defined as Active Noise Control,
ANC, uses acoustic transducers to cancel the noise source in the acoustic field. However, in a
large number of applications, the noise is originated by a mechanical vibration. Recently,
Fuller and Flotow (1995) introduced a new concept about this problem, controlling the
vibration in the structure in order to reduce the overall sound radiation. This technique, named
Active Structural Acoustic Control, ASAC, uses structural actuators to control the mechanical
vibrations while the noise radiation is minimized. Fuller's research, coming from the ANC
theory, is a feedforward approach based on the model of wave propagation in the structure,
Fuller et al. (1996).



On the other hand, there is the correlated area of Active Vibration Control, AVC. The
AVC problem comes from the problem of the control of flexible structures, involving low
frequency dynamics. It is mainly based in the feedback theory, Meirovitch (1990) and Inman
(1989). However, with the fast progress of the modern control theory, the frequency range of
the AVC problem has been increased, and now it is overlapping the ANC problem. In this
scenario, the Active Noise and Vibration Control problem (ANVC) was introduced, Ross and
Purver (1997). The ANVC uses structural transducers to control the vibration in the noise
source as the Fuller ASAC problem. However, in ANVC, the model of the system is based in
the dynamics of the structural modes, instead of structural waves.

These two approaches, ASAC and ANVC, have demonstrated the potential of mixing the
AVC and the ANC problems, which can now be treated as a dual theory of waves and modes.
This paper is a feedback approach contribution to this unification process. This work covers
the problem defined as Active Structural Noise Control, ASNC. It means the active
attenuation of structural modes of a mechanical system which are source of acoustical noise. It
covers a serious lack in the feedback control for structural noise attenuation, the problem of
controlling the modes in a frequency band in the mid-frequency range.

The concept of active vibration control is usually based upon a base-band controller. The
control system has a low-pass filter characteristics. In this case, all modes from DC up to a
specified cross-over is controlled. A truncated model of the structure is generally used, in
which case it is necessary to guarantee the robustness to the residual dynamics. Using an H∞
approach, it is possible to introduce in the design a weighting function, under the control
signal, to roll off the high frequency dynamics, Leo et al. (1993) and Kajiwara & Nagamatsu
(1995). This requires iterative adjustment of the weights to satisfy the robustness requirement.
Applied to the control in mid-range frequencies, this approach requires a model of the system
with all modes up to the chosen frequency to be controlled. The result is a model with an
order that is greater than the order that would be necessary if the uncontrolled low frequency
modes had not been considered.

In this paper, a band-limited H∞ controller which has a system model with less modes
than the traditional approach (base-band model) is proposed. This model includes only the
modes to be controlled in a reduced design model, a band-limited model restricted to the
region fmin< f < fmax. The residual low and high frequency dynamics is modeled as unstructured
additive uncertainty. In addition, the robustness to the parameter variations is included in the
design. The result is a controller to attenuate generic distinct modes which is robust to
imperfections in the system modeling, or variations in the dynamics of the controlled system.

In summary, this work presents the band-limited H∞ approach to ANVC. First, a model
partition of the nominal reduced model and the residual dynamics is introduced. Then,
concepts of robustness with respect to residual modes are presented. Finally, the robustness
with respect to the parameter variations is added to the design. An experimental example is
used to illustrate the application of the proposed approach.

2. THE BAND-LIMITED H∞ APPROACH

The design model of the structure includes only the modes to be controlled. The
unmodeled modes are included in a residual model to make sure that the dynamics of this
residual model does not interfere with the controlled system. Thus, a robustness requirement
with respect to the residual dynamics is included in the design model. Otherwise, the closed-
loop system could become unstable.

Based upon the uncertainty theory, the system model is partitioned in a reduced model
and a residual model, such that
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where the subscript m is related to the nominal model, with the modes in the frequency region
fmin< f <fmax to be controlled, and the subscript r is related to the residual model of low and
high frequency.

The residual dynamics is defined as
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where the subscript lf denotes the low frequency dynamics, f<fmin, and the subscript hf denotes
the high frequency dynamics, f>fmax., and xr=[xlf

T xhf
T]T and Cr=[Clf  Chf].

Based on the uncertainty theory, the model given by Eq. (2) represents an unstructured
uncertainty in the additive form. The additive unstructured uncertainty form is a
straightforward way to introduce the robustness relative to the effects of the truncation in the
control problem. In a transfer function form, it yields

rm  +  = GGG (3)

where G is the real system (infinite-dimensional), Gr=Cr(Is-Ar)
-1Br is the residual model and

Gm=Cm(Is-Am)-1Bm is the reduced model.
This particular uncertainty can be defined as a set of parameter-dependent models, such

that, it can be possible to define a function Gup that represents a low order upper bound for the
residual dynamics,

∞∞
> rup GG (4)

In this case Gri represents a high order function (with all unmodeled modes of the low
frequency and the high frequency region). Replacing Gr by Gup in the design model, if there
exist a controller that satisfies the robustness requirements with the uncertainty model Gup, it
assures the robustness of the controlled system to the residual dynamics Gr, since
||Gr||∞<||Gup||∞ , i. e., Gup is an upper bound function to Gr (Boyd and Barrat, 1990). Once that
Gr is know at the moment the system is truncated, Gup can be defined before the design.

Partitioning the system, the robustness to the residual dynamics can be included in the
controller design. The perturbed system scheme is founded as shown in Figure 1, an external
feedback block ∆ is added to the model without lost of generality, with ||∆||∞=1.

If the system is not accurately modeled or if its dynamics can undergo variation,
robustness to parameter uncertainty is also added to the design. This robustness characteristic
is translated into a fractional representation of the uncertainty in the matrices A, B, C e D.
Thus, decomposing the reduced model, Gm, in a nominal model and a set of l uncertainty
conditions in the fractional form, the generic form of the nominal model yields
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Figure 1: Perturbed system with an additive uncertainty.
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According to Xie (1996), this parameterization of the uncertainty can be translated into
additional inputs and outputs in the system. These inputs and outputs are related with another
external feedback loop, as occurred in the residual uncertainty case. Therefore, the system
with parametric uncertainty is equivalent to
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where δi and δo are additional input and output vectors, related to the parameter uncertainties,
and ε>0 is a scaling parameter.

To obtain the final design model, first one observes that the disturbance input d in the
residual dynamics Gr in Figure 1 does not interfere in the feedback loop, i. e., the control can
not act on it. Hence, this specific input can be eliminated from the model. Additionally, to
handle the problem of vibration attenuation, an output y, weighted by a low pass function W1,
is added to the above diagram. Finally, introducing a scale factor K2 in the residual uncertainty
input and output, this problem can be converted in a scaled H∞ problem. The final design
block diagram is shown in Figure 2, where the exogenous inputs are w=[dT pT δi

T]T and the
regulated outputs are z=[ y’T qT δo

T]T , where:
•  d and y’ are the disturbance input and the weighted measured output vectors, related to

the damping increase requirement
•  p and q are the additive uncertainty input and output vectors
•  δi and δo are the input and output vectors associated to the parameter uncertainty.
Furthermore, observing Figure 2, the design parameters in this specific H∞ problem

become the gain γ, the attenuation K2, the factor ε and the weighting function W1. The control
targets are:

•  to increase the damping of the required modes, adjusting functions W1 and γ
•  to assure robustness to the residual dynamics, specifying Gup and setting K2

•  to restrain the performance degradation due to parameter variations, setting ε.



1/ε

Gup

y

Mux

Reduced
model

u

d

Demux

ε

δo1

W1

p
y'

q
δi

K2

1/K2

  γ

+

Figure 2: Design model diagram.

3. EXPERIMENTAL EXAMPLE: CONTROL OF TWO MODES OF A PLATE IN
THE MID FREQUENCY RANGE

The experimental example proposed here illustrates the following problem: Consider a
structure with structural borne noise due to some modes of the mid- frequency range. It is
assumed that the actuators are attached in optimal positions to attenuate these specific modes.
An optimal location is also determined to place the sensors. However, this position may not be
available for some reason. It is the case of a microphone to measure noise in a aircraft cabin,
for instance, to attenuate the noise in the passenger place. It is not possible to put the sensor in
an optimal location, where the passenger head is. Rather, sensors are distributed is sub-
optimal positions along the aircraft structure. Thus, in this example, a sub-optimal position is
selected to measure the feedback signal. The so called optimal sensor is used only to define a
cost function and to verify the attenuation obtained in the controlled system. In the
implementation these optimal sensors can be suppressed once they do not appear in the
feedback loop.

Plant model

To illustrate the design of a band-limited H∞ controller, a plate experiment is proposed,
meant to simulate the hypothetical ANVC problem described above. The structure, shown in
Figure 3, is a 450x500x2 mm aluminum plate completely free along its boundaries. Two
modes of this plate, located in the mid-frequency range, are considered acoustic noise sources.
These two modes to be controlled have natural frequencies f1=141 Hz and f2=153 Hz. Two
Piezo-ceramic patches, PZT, with dimensions 50x20x0.267 mm, are used as control actuators.
They are positioned in optimal points, each one to attenuate one mode. Dividing the plate in
square elements of dimension 50x50 mm, the actuators are located in the elements 32 and 68,
as shown in Figure 3. An optimally localized PVDF film sensor is used to measure the
vibration, located in the element 44. Suppose this optimal sensor location unrealizable to feed
back the system, a sub-optimal position is determined in the element 65, where a 25x25x0.267
mm PZT patch is used as the feedback sensor. The disturbance signal is applied in the node of
the elements 3, 4, 11 and 12. A hammer with a force transducer is used as the disturbance
signal.

The PZT actuators use two LDS power amplifiers, model PA25E, to magnify the control
signal. The controller is implemented is a dSPACE environment with a DS1003 processor
board, a DS2003 DAC board and a DS2103 ADC board. The controller input signal is



provided by the sub-optimal PZT sensor signal connected to a signal conditioner.
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Figure 3: Free plate experiment.

An HP3566A signal analyzer is used to obtain an experimental model of the structure and
to investigate the controller performance. The signals measured by the HP analyzer are the
control inputs, the disturbance input, and the PVDF and PZT sensors. With these signals, a
state-space model of the plate is determined by an identification program (Moreira and
Arruda, 1997), using the ERA approach (Juang and Pappa, 1988). This state space realization
has the disturbance signal, w, the PZT1 actuator, u1, and the PZT2 actuator, u2, as the input
vector. The output vector consists of the PZT sensor signal, yPZT, and the PVDF sensor signal,
yPVDF.

Controller design

The parameter variation is simulated by a lumped damping/mass device, with mass
attached to the plate by a thick viscoelastic tape, and by small lumped mass. The nominal case
is that one with the damping/mass attached to the element 8. The perturbed cases, considered
the worst cases, are the plate without any lumped mass attached and the plate with two



lumped mass attached in the elements 8 and 72, respectively. Thus, three models are identified
experimentally.

After identifying the models, nominal and perturbed cases, the system is partitioned as
described in section 2. For the controller design, a fourth-order model is assumed as the
reduced nominal model. This model contains only the dynamics of the two modes to be
controlled, with frequencies f1=141 Hz and f2=153 Hz. All the other modes, higher than the
frequency f2 and lower than frequency f1, are considered residual dynamics. In the sequence,
the uncertainty model is determined.

The design model is shown in Figure 2. In this design model diagram, the input d refers to
the disturbance input, the control inputs, u=[u1 u2]

T, are the PZT1 and PZT2 actuators, the
input p is related to the uncertainty model and δi =[ δ1i …δ6i]

T is related with the parametric
perturbation. The output yPVDF is the regulated output related to the performance requirement,
i. e., the mode attenuation. The other regulated outputs are q =[q1 q2]

T associated to the
uncertainty model and δo =[ δ1o …δ6o]

T  related with the parametric perturbation. The PZT
sensor signal, yPZT, is the measured output, y, used to feed back the controller.

The uncertainty is a function from the two control inputs to the measured output. Thus,
the uncertainty model yields
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The uncertainty model is shown in Figure 4. The residual dynamics in the figure refers to
the nominal case and to the perturbed cases. The left plot is related with the transfer function
from the control input 1, u1, to the measured output, yPZT. The right plot is related with the
transfer function from the control input 2, u2, to the measured output, yPZT.
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Figure 4: Frequency response to the residual uncertainty, Gup, residual dynamics, Gr and the
nominal model, Gm.

The variation in the parameters of the model is shown in Figure 5, for the nominal case



and the two perturbed cases. The left plot refers to the transfer function from the disturbance
input, d, to the regulated output, yPVDF. The right plot refers to the transfer function from the
disturbance input, d, to the measured output, yPZT.
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Figure 5: Dynamics of the reduced nominal model and perturbed cases

The matrices [H, E] of the fractional representation of the parametric uncertainty, Eq. (6),
are determined by the singular value decomposition. The uncertainty model is assumed as the
worst case of parameter variation. This case corresponds to the perturbed case, which presents
the supreme singular value. After determining H and E, the augmented system is determined
using Eq. (7). Thus, the design plant model is determined (see Figure. 2).
After some iteration over the free parameters, the final values chosen were γ=0.3, K2=0.01
and ε=1. The weight W1 is a second order function W1=ω2/(s2+2ξωs+ω2), with ω=2*π*147
and ξ=0.1. It means a weighting function with a high gain in the region of the mode to be
controlled. The parameters of the residual uncertainty, Gup, are,
•  to Gup1 : k= 0.0541 ,   ωz1 = 2*π*154 rad/s,    ξz1 = 0.01 , ωp1 = 2*π*180 rad/s,    ξp1 = 0.7
•  to Gup2 : k= 0.0477 ,   ωz2 = 2*π*142 rad/s,    ξz2 = 0.01 , ωp2 = 2*π*180 rad/s,    ξp2 = 0.7

The robustness is quantified by mean of the FRF from the disturbance input to the control
signals. Figure 6 shows the FRF of the non-robust closed-loop system, without the inclusion
of the residual and the parametric uncertainty, in continuous line, and the robust one, in
dashed line. The robustness is associated with the low magnitude of the peaks of the residual
modes in the FRF for the robust control case. It means that the control energy do not excite the
residual dynamics like the non-robust control.
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Figure 6: FRF from the disturbance input to the control signal.



Experimental analysis

The effectiveness of the controlled system is verified in a real time implementation. First
the continuous controller must be converted into a discrete one. In this case, the dSPACE
sample time is assumed as 0.1 ms. Again, the HP3566A signal analyzer is used to acquire the
simulation data to investigate the controller performance. The signals measured by the HP
analyzer are used to compute the FRF of the open-loop and closed-loop systems.

The result for the nominal case is shown in Figure 7. Figure 8 shows the experimental
result for the perturbed cases. These figures present the FRFs from the input disturbance to the
PZT sensor for the uncontrolled and controlled case. The increment in the damping of the
controlled modes, located in  f1=141 Hz and f2=153 Hz, is clear in Figure 8.
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Figure 7: FRF for the nominal case.
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Figure 8: FRF for the (a)1st perturbed case (b) 2nd perturbed case.

As expected, the selected modes are attenuated, while the dynamics of the residual modes
remains unchanged. The performance deterioration is satisfactory in the perturbed cases.
Thus, all theoretical results are corroborated by the experiments.



4. CONCLUSION

A feedback approach is applied here in the attenuation of structural modes which are
considered as noise sources. A band-limited H∞ control is presented to attenuate modes in the
mid-frequency range. The experimental example showed that the modes to be controlled can
be attenuated without changing the dynamics of the remaining modes. Thus, the control effort
is minimized since it is concentrated in the frequency band of the controlled modes. The
inclusion of the robustness to residual and parametric uncertainties assures the robust
performance of the closed-loop system. Moreover, the resultant controller presents a low order
dynamics since a minimal order model of the structure is taken into account.
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