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Abstract - This study describes a 3-D computational framework to model stable extension of a macro-
scopic crack under mode I conditions in ductile metals. The Gurson-Tvergaard dilatant plasticity model
for voided materials describes the degradation of material stress capacity. Fixed-size, computational cell
elements defined over a thin layer at the crack plane provide an explicit length scale for the continuum
damage process. Outside of this layer, the material remains undamaged by void growth, consistent with
metallurgical observations. An element vanish procedure removes highly voided cells from further consid-
eration in the analysis, thereby creating new traction-free surfaces which extend the macroscopic crack.
The key micro-mechanics parameters are D, the thickness of the computational cell layer; and f, the ini-
tial cell porosity. Calibration of these parameters proceeds through analyses of ductile tearing to maich
R-curves obtained from testing of deep notch, through-crack bend specimens. The resulting computation-
al model, coupled with refined 3-D meshes, enables the detailed study of non-uniform growth along the
crack front and predictions of specimen size, geometry and loading mode effects on tearing resistance, here
described by J-Aa curves. Computational and experimental studies are described for shallow and deep
notch SE(B) specimens having side-grooves and for a conventional C(T) specimen without side-grooves.
The computational models prove capable of predicting the measured R-curves and post-test measured
crack profiles.
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1. INTRODUCTION

The stable tearing of a macroscopic crack in ductile materials for structural applications, such
as steel alloys and aluminum, is conventionally characterized by crack growth resistance
(J-Aa) curves using the J-integral to describe the intensity of near-tip deformation (see, e.g.,
the review by Hutchinson [1]). Since additional load-carrying capacity in structural compo-
nentsis gained if some amount of stable crack growth is allowed, alarge number of engineering
applications, particularly predictions of mechanical behavior and defect assesments of in-ser-
vice structure, currently centers on methodologies based upon measured R-curves. Specifical-
ly, large increases of / above the onset of ductile crack extension (/) are possible in materials
with high tearing resistance with considerable practical consequences to design and structural
flaw analysis. Moreover, ductile tearing often preceeds cleavage fracture in structural steels



operating in the ductile-to-brittle (DBT) region; such small amounts of stable crack growth al-
ter significantly the near-tip stress fields [2,3] which strongly affect the propensity to trigger
cleavage.

Laboratory testing of fracture specimens to measure resistance curves (J-Aa) consistently
reveals a marked effect of absolute specimen size, geometry, relative crack size (a/W) and load-
ing mode (tension vs. bending) on R-curves (see [4] for representative experimental studies).
For the same material, deep-notch bend, SE(B), and compact tension, C(T), specimens yield low
R-curves while shallow-notch SE(B)s, single-edge notch tension, SE(T), and middle-crack ten-
sion, M(T), specimens yield larger toughness values at similar amounts of crack growth. These
effects observed in R-curves arise from the strong interaction between microstructural fea-
tures of the material which govern the actual separation process and the loss of stress triaxial-
ity in the crack front region due to large-scale yielding. Consequently, realistic methodologies
for fracture assessments of structural components must include advanced procedures capable
of modeling ductile crack extension.

This study extends the computational cell framework, originally developed in a 2-D context
by Xia and Shih (X&S) [5,6,7] into a 3-D setting capable of modeling mode I crack extension.
Applications of this 3-D framework readily include, for example, surface breaking defects as
well as conventional, through-thickness fracture specimens (with and without side-grooves).
In the computational cell model, ductile crack extension occurs through void growth and coales-
cence (by cell extinction) within a thin layer of material symmetrically located about the crack
plane. An element vanish procedure removes highly voided cells from the analysis thereby
creating new traction-free surfaces which extend the macroscopic crack. The cells have initial
(smeared) void volume fraction denoted by f;,. The layer thickness (D) introduces a strong
length-scale over which damage occurs; elsewhere, the background material obeys the flow
theory of plasticity without damage by void growth. The 3-D form of the Gurson-Tvergaard
(GT) dilatant plasticity theory [8,9] provides a suitable description of void growth within the
cells. Our exploratory 3-D studies using computational cells clearly demonstrate the capability
to predict the strong constraint effects on measured R-curves and severe tunnelingin non-side-
grooved specimens. The resulting computational framework, coupled with refined 3-D meshes,
enables the detailed study of non-uniform growth along the crack front and development of im-
proved models to assess fracture behavior in structural materials.

2. COMPUTATIONAL CELL MODEL FOR DUCTILE CRACK GROWTH

Ductile fracture in metals is a multistep mode of material failure incorporating the combina-
tion of various and simultaneous mechanisms at the microscale level (see, e.g., the review of
Garrinson and Moody [10]). Such mechanisms are conveniently divided as follows: a) nucle-
ation of microvoids from fracture or separation of inclusions, b) subsequent growth of widely
separated and larger microvoids, ¢) localization of plastic flow and d) final coalescence of micro-
voids. Unlike cleavage fracture, which is a mechanism driven almost entirely by the local ten-
sile stresses, inclusion of the microregime of ductile fracturein crack growth analysesiscentral
to relate the material tearing behavior with a macroscopic (engineering) fracture parameter
in a continuum framework. Experimental observations and computational studies show that
the plastic strains for nucleation are small thereby causing only little damage in the material
ahead of the crack tip. Such feature enables simplification of the four-step failure process de-
scribed above by assuming the growth of microvoids as the critical event controling ductile ex-
tension. Figure 1(a) pictures the schematic path of a growing crack in a ductile material. The
material layer enveloping the growing crack, which must be thick enough to include at least
avoid or microcrack nuclei, identifies a process zone for the ductile fracture which conveniently
gives the necessary length dimension for the model. Void growth and coalescence in the layer
will cause the surface tractions that the process zone exerts on its surrounding drop to zero
(this implicitly defines a traction-separation law for the process zone layer).

Motivated by the above observations, X&S [5,6,7] proposed a model using computational
cells toinclude arealistic void growth mechanism, and a microstructural length-scale physical-



ly coupled to the size of the fracture process zone. Void growth remains confined to a layer of
material symmetrically located about the crack plane, as illustrated in Fig. 1(b), and having
thickness D, where D is associated with the mean spacing of the larger, void initiating inclu-
sions. This layer consists of cubical cell elements with dimension D on each side; each cell con-
tains a cavity of initial volume fraction f|, (the initial void volume divided by cell volume). As
a further simplification, the void nucleates from an inclusion of relative size f, immediately
upon loading. Progressive void growth and subsequent macroscopic material softening in each
cell are described with the Gurson-Tvergaard (GT) constitutive model for dilatant plasticity
[8,9] given by

2
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where o0, denotes the effective Mises (macroscopic) stress, 0, is the mean (macroscopic) stress,
0 is the current flow stress of the cell matrix material and f defines the current void fraction.
Under multiaxial stress states, o, = (3SijSij/2)1/ 2 where S, denotes the deviatoric compo-
nents of Cauchy stress. Factors g, g5 and gsintroduced by Tvergaard improve the model pre-
dictions for periodic arrays of cylindrical and spherical voids. Following Tvergaard we use
q1=1.25, g, =1.0 and g5=g¢%

An additional contribution to the void growth rate arises from the nucleation of new voids
caused by large plastic strains at much stronger, smaller inclusions dispersed into the matrix.
The volume fraction of voids increases over an increment of load due to continued growth of
existing voids and due to the formation of new voids caused by interfacial decohesion of inclu-
sions or second phase particles. Thus,
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where €, denotes the matrix plastic strain and e is the volumetric (macroscopic) plastic strain.
Here, the nucleation component follows a normally distributed evolution model [12] with pa-
rameter A defined by the mean value, €y, the standard deviation, s, and the volume fraction
of void nucleating particles, fy.

The GTyield function in Eq. (1) does not model realistically the rapid loss of stress capacity
for larger void fractions nearing coalescence levels, nor does the model create new traction free
surfaces to represent physical crack extension. In the present work, the evolution of stress
within cells follows the original constitutive model of GT in Eq. (1) until f= f5, where ftypical-
ly has a value of =0.15. The final stage of void linkup with the macroscopic crack front then
occurs by reducing the remaining stresses to zero in a prescribed manner. Tvergaard [9] refers
to this process as the element extinction or vanish technique. Our cell extinction processimple-
ments a linear-traction separation model (see additional details in Ruggieri and Dodds (R&D)
[11]). When fin the cell incident on the current crack tip reaches a critical value, f%, the com-
putational procedures remove the cell thereby advancing the crack tip in discrete increments
of the cell size.

Figure 1(c) shows the typical, plane strain finite element representation of the computa-
tional cell model where symmetry about the crack plane requires elements of size D /2. Materi-
al outside the computational cells, the “background” material, follows a conventional J, flow
theory of plasticity and remains undamaged by void growth in the cells. Material properties
required for this methodology include: for the background material Young’s modulus (E), Pois-
son’sratio (v), yield stress (o) and hardening exponent (n) or the actual measured stress-strain
curve; and for the computational cells: D and f;, (and of much less significance fz). The back-
ground material and the matrix material of the cells generally have identical flow properties.
Using an experimental J- Aa curve obtained from a conventional SE(B) or C(T) specimen, a se-
ries of finite element analyses of the specimen are conducted to calibrate values for the cell pa-
rameters D and f, which bring the predicted J- Aa curve into agreement with experiment. The
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Figure 1 Modeling of ductile tearing using computational cells.

CTOD at initiation of ductile tearing provides a good starting value for D, with f,, then varied
toobtain agreement with the experiment. Alternatively, metallurgical surveys of inclusion vol-
ume fractions and sizes may be used with various packing arrangements (e.g. nearest neighbor
distance) to estimate D and/orf, . Experience with plane-strain finite element analyses of
SE(B) and C(T) specimens to estimate D and f, for common structural and pressure vessel
steels suggests values of 50-200 um for D, 0.001-0.005 for f;, , with f% typically 0.15-0.20. Once
determined in this manner using a specific experimental R-curve, D and f, become “material”
parameters and remain fixed in analyses of all other specimen geometries for the same materi-
al.

The three-dimensional computations for the crack growth analyses reported here are gen-
erated using the research code WARP3D [13]. Key features of the code employed in this work
include: (1) the GT and Mises constitutive models implemented in a finite-strain setting, (2)
cell extinction using the traction-separation model, (3) automatic load step sizing based on the
rate of damage accumulation, and (4) evaluation of the J-integral using a domain integral pro-
cedure. WARP3D employs a continuously updated, Lagrangian formulation naturally suited
for solid elements having only translational displacements at the nodes. For these large, 3-D
analyses which typically require 1500 or more solutions of the linearized equations, an excep-
tionally fast code/solver becomes critical to render the analyses computationally feasible.
WARP3D solves the equations at each iteration using a linear pre-conditioned conjugate gradi-
ent (LPCG) method implemented within an element-by-element (EBE) software architecture.



This approach reduces memory sizes and execution times significantly below those for sparse
direct solvers (no assembly of the system stiffness matrix).

3. FINITE ELEMENT MODELS

3.1. SE(B) Specimens

Finite element analyses are described for shallow notch (a/W=0.14) and deep notch
(a/W=0.6) 1T-SE(B) specimens with thickness, B, of 25.4 mm. Here a denotes the crack length
and Wthe specimen width. Joyce and Link [15] performed unloading compliance tests at 100°C
on these specimens made of ASTM A533B (TL orientation) to measure tearing resistance
curvesin terms of J-Aa. After fatigue pre-cracking, the specimens were side-grooved to a depth
of 0.1B on each side to promote uniform ductile growth over the thickness. The analyses utilize
a piecewise-linear approximation for the measured true stress-logarithmic strain curve
constructed from the average of three tensile tests (see additional details in R&D [11]). Other
mechanical properties needed for the analyses include £ = 200 GPa and v = 0.3. The matrix ma-
terial of the computational cell elements and the void-free background material are assigned
these properties.

Figure 2(a) shows the finite element model constructed for 3-D analyses of the specimen
with a/W=0.6. The shallow crack model has similar features. Symmetry conditions enable
analyses using one-quarter, 3-D models and one-half, plane-strain models. The 3-D models
have approximately 8000 isoparametric 8-node elements arranged into 13, variable thickness
layers over the half-thickness (B/2), as illustrated in Fig. 2 (a). The first 9 layers lie along the
crack front and the outermost 4 layers define the side groove region; each layer has the identi-
cal “in-plane” (X-Y) mesh refinement. Within each of the 9 layers over the crack front, the ele-
ment mesh contains a row of 60 computational cells along the remaining ligament (W —a) ar-
ranged as shown in Fig. 1(c). A series of calibration analyses suggest an optimal cell size of
D =250 um. The initially blunted crack tip accommodates the intense plastic deformation and
initiation of stable crack growth in the early part of ductile tearing. The slab of 540 (9 x 60) com-
putational cells over which damage occurs to model crack growth extends 7.5 mm ahead of the
initial crack front.

Appropriate constraints are imposed on the symmetry planes for all configurations. Dis-
placement controlled loading of the models asindicated in Fig. 2(a) permits continuation of the
analyses once the load decreases during crack growth. For both a/W ratios, multiple sets of
nodeson Y =0near the top surface must have imposed displacements to prevent locally severe,
element distortions. A typical solution to advance the crack by 40 cells (Aa =40 xD/2 =5 mm)
on the centerplane (Z =0) in the deep crack specimen uses 700 load increments and requires
3 CPU hours on a CRAY C-90 supercomputer.

3.2. C(T) Specimens

Finite element analyses in a full 3-D setting are conducted on a deep crack (a/W=0.68),
1T-C(T) specimen with thickness, B, of 25.4 mm that has no side grooves. Here a denotes the
crack length and W the specimen width. Panontin and Nishioka [16] performed unloading
compliance tests at room temperature on specimens made of ASTM A516 to measure tearing
resistance curves in terms of J-Aa. The experimental matrix includes specimens in both T-L
and L-T orientations. The analyses utilize a piecewise-linear approximation for the measured
true stress-logarithmic strain curve constructed from the average of three tensile tests (see
additional details in R&D [11]). Other mechanical properties needed for the analyses include
E =200 GPa and v=0.3.

Figure 2(b) shows the finite element model constructed for 3-D analyses of the C(T) speci-
men. The quarter-symmetric, 3-D model has 5432 isoparametric 8-node elements arranged



into 7 variable thickness layers defined over the half thickness with appropriate constraints
imposed on the symmetry plane. Thisrefinement in the thickness direction proved satisfactory
to resolve the tunneled crack front profile. Displacement controlled loading applied at the pin
hole indicated in Fig. 2(b) enables continuation of the analyses once the load decreases during
crack growth.Within each of the 7 layers over the crack front, the element mesh contains a row
of 60 computational cells along the remaining ligament (W —a) arranged as shown in Fig. 2(b).
A series of calibration analyses suggest an optimal cell size of D = 200 um for this material. The
initially blunted crack tip accommodates the intense plastic deformation and initiation of
stable crack growth in the early part of ductile tearing. The slab of 420 (7 X 60) computational
cells over which damage occurs is capable of accommodating =4 mm of growth on the center-
plane ahead of the initial crack front.
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Figure 2 Finite element models employed in the analyses.

4. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENTS

4.1. Constraint Effects on R-Curve

This section describes the results of detailed 3-D analyses to predict R-curves for the deep and
shallow notch SE(B) specimens tested by Joyce and Link [15]. Figure 3(a) shows the predicted
J-resistance curves for the SE(B) specimens computed using f, =0.002, D =250 um with the
acceleration parameters assigned the values e, = 0.75, s, =0.05 and f; =0.50 (R&D [11]). For
each a/W ratio, tests were performed on three nominally identical specimens; the experimen-
tal data are indicated with symbols. The solid line in the plot represents a mean resistance



curve obtained by a weighted average taken over the half-thickness. The dashed line repre-
sents the computed resistance curve for crack extension defined at the centerplane (Z=0).

The calibration process to set values for these parameters used experimental results for
only the deep notch R-curve. The prediction effort then focused on the shallow notch specimen.
The centerplane and average resistance curves generated in the 3-D analyses agree quite well
with the experimental R-curves for 4-5 mm of crack extension. The centerplane and thickness
average R-curves bracket the three experimental data sets for each a/W ratio. Note that the
experimental crack extensions shown in this figure derive from the unloading compliance esti-
mates and thus represent some average crack growth over the front. Also recall that the layer
of 60 computational cells defined ahead of each point along the initial crack front allows maxi-
mum growth of 7.5 mm (60 X D/2). However, at crack extensions beyond the =5 mm range, it
seems reasonable to expect some influence on the R-curve from the non-voided, background
material ahead of the 7.5 mm limit as the crack front at the side-groove in the shallow notch
specimens exhausts the 60 cells at =4 mm of growth on the centerplane. Detailed studies of
the porosity distribution on the crack plane suggest that the decreasing slopes observed in R-
curves follow from the continually expanding size of the process zone for void growth on the
crack plane [11]. In the analyses, cells at increasingly larger distances from the crack front ex-
perience void growth. Consequently, as the crack front extends to their location, little addition-
al deformation is required to attain f= f5.

4.2. R-Curve Response and Crack Front Tunneling for C(T) Specimens

Panontin and Nishioka [16] performed unloading compliance tests at room temperature on
1T-C(T) specimens of an A516-70 steel. The specimens have a/W=0.6 but do not have side-
grooves. The measured resistance and load-displacement curves for tests performed were ob-
tained using two different orientations of the crack plane relative to the rolling direction of the
steel plate. In the TL orientation, the crack grows in the rolling direction of the plate, i.e., crack
growth is aligned with the elongated grain structure. In the LT orientation, crack growth oc-
curs transverse to the rolling direction. The computed R-curves using the cell model outlined
previouly agree well with experimental data (see detais in R&D [11]).

Figure 3(b) compares the measured crack front profile for the LT specimen with the front
profile predicted by the 3-D analysis. The unloading compliance test was interrupted at a J of
510 kJ /m?; the specimen was fatigue cycled to mark the end of ductile tearing, and finally
loaded to fracture. The predicted crack front indicated on the figure is obtained by adding the
measured fatigue pre-crack to the numerical results at each point along the crack front (pre-
dicted growth values taken at JJ of 510 kJ /m?). Generally good agreement exists between the
computed and the measured crack-front shape; the analysis captures the features of the ex-
tending crack front, especially in the mid-thickness region. At the quarter-thickness location,
the measured front has less growth and less curvature than the predicted curve, perhaps an
effect of the curved fatigue pre-crack.

5. CONCLUDING REMARKS

This study describes a 3-D computational framework to model stable extension of a macroscop-
ic crack under mode I conditions in ductile metals. Material separation occurs through a local
fracture mechanism based on the growth and coalescence of microvoids dispersed in the mate-
rial. The Gurson-Tvergaard dilatant plasticity model for voided materials describes the
eventual loss of material stress capacity under sustained loading. Fixed-size computational
cell elements defined on a thin layer adjacent to the crack plane provide an explicit length scale
for the continuum damage model. An element vanish procedure removes highly voided cells
from further consideration in the analysis, thereby creating new traction-free surfaces which
extend the macroscopic crack. The key micromechanics parameters are D, the thickness of the
computational cell layer, and f|,, the initial cell porosity. These parameters are calibrated
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through analyses of ductile tearing to match R-curves obtained by testing simple through-
crack specimens. Such calibration scheme provides computational parameters which areloose-
ly coupled, at best, with metallurgical features of the material. The resulting computational
framework, coupled with refined 3-D meshes, enables the detailed study of non-uniform
growth along the crack front, including tunneling and reverse tunneling, and predictions of
specimen size, geometry and loading mode effects on tearing resistance, here described by J-Aa
curves.

Our exploratory 3-D analyses of deep and shallow crack SE(B) specimens and of a deep
crack C(T) specimen demonstrate the capability to predict geometry effects on R-curves and
measured crack front profiles. In particular, numerical results for the plane-sided C(T) speci-
men predict a tunneled crack front profile in very good agreement with the post-test, measured
profile. Our computations also predict remarkably well the (strong) effects of constraint on
measured R-curves for the side-grooved SE(B) specimens.

The computational demands for refined 3-D analyses of ductile growth remain formidable.
However, the numerical procedures described here coupled with the newest generation of Unix
workstations are making feasible these analyses on a more routine basis. Ongoing work with
the 3-D computational cell framework focuses on modeling of ductile tearing in surface cracks
in pipelines/cylinders to resolve R-curve transferability issues and on the effects of ductile
tearing as the precursor to cleavage fracture in the ductile-to-brittle regime (see [NO TAG] for
initial studies).
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