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Abstract - This study explores the development of a probabilistic (micromechanics) framework applica-
ble to cleavage fracture to predict effects of constraint loss and ductile tearing on macroscopic fracture
toughness (J ). Specifically, a probabilistic model employing the statistics of microcracks (weakest link
philosophy) and a local failure criterion for transgranular cleavage provides the coupling between the
microregime of fracture (which includes the stresses that develop ahead of the macroscopic crack) with
macroscopic (remote) loading. For stress-controlled, cleavage mechanisms of material failure, the Wei-
bull stress (0y,) emerges as a probabilistic fracture parameter defining conditions leading to (local) frac-
ture. This parameter permits predictions of the strong effects of constraint variations and ductile tear-
ing on (macroscopic) cleavage fracture toughness over a wide range of loading and crack configurations.
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1. INTRODUCTION

The fracture behavior of structural components subjected to various loading and environmen-
tal conditions is of obvious relevance in assessing structural integrity. The increasing demand
for ensuring acceptable levels of structural safety has spurred a flurry of predictive methodolo-
gies aimed at quantifying the impact of defects in load-bearing materials such as, for example,
cracks in critical weldments of high pressure vessels. Such methodologies play a key role in
repair decisions and life-extension programs for in-service structures (e.g., aerospace, nuclear
and offshore structures). While mechanical failures in structural members and components
may result from a combination of several material degradation processes, assessments of
structural integrity generally focus on cleavage fracture. This fracture mode potentially limit
the load bearing capacity of the structure aslocal crack-tip instability may trigger catastrophic
failure at low applied stresses with little plastic deformation.

Conventional fracture assessments of large engineering structures using laboratory speci-
men data most often employ a one-parameter characterization [1] of loading and toughness
(Kp, o or CTOD, 6). The more recent two-parameter approaches (J-T' [2-6] and J-Q [7, 8] meth-
odologies) retain contact with traditional fracture mechanics and provide a concise framework
to represent measured toughness values in terms of a J-T or J-Q fracture locus [38]. However,
such methods are conservative (i.e., the failure of a cracked component at a given load is over-



predicted) and do not provide a means to predict the effects of constraint variations and prior
ductile tearing on toughness. Further, cleavage fracture is a highly localized, inherently ran-
dom phenomenon which exhibits strong sensitivity to material characteristics at the microle-
vel. In particular, the random inhomogeneity in local features of the material causeslarge scat-
ter in experimentally measured values of fracture toughness (K., J. or CTOD) — see [38] for
illustrative data. Such features make assessments of structural integrity using laboratory
testing of standard specimens and simplified crack configurations a complex task: what is the
“actual” material toughness and how is the scatter in measured values of fracture toughness
incorporated in procedures for defect assessments?

There has recently been a surge of interest in analyzing and predicting material failure
caused by transgranular cleavage based upon a probabilisticinterpretation of the fracture pro-
cess. A primary impetus for bringing probabilistic fracture mechanics concepts into play is the
inherent random nature of fracture. Beremin [9], Wallin et al. [10-13], Lin et al. [14], Briickner
et al. [17], Godse and Gurland [15] among others considered models of this type to provide a
link between the size of carbides particles dispersed in the material and the inhomogeneous
stressfields ahead of a macroscopic crack. The work of Beremin [9] attains particular relevance
here as it introduced the Weibull stress (o0,,) as a suitable crack-tip parameter incorporating
alocal criterion for fracture. More recent efforts in this area have focused on developing trans-
ferability models for cleavage fracture toughness based upon the Beremin’s Weibull stress.
Bakker and Koers [37], Minami et al. [19], Ruggieri et al.[20], assess effects of specimen thick-
ness and crack length on elastic-plastic fracture toughness (J,, d.). Further studies by Rug-
gieri and Dodds [21-25] generalize the Weibull stress for stationary and growing cracks to in-
clude effects of loss of constraint and ductile tearing on macroscopic fracture toughness.

The objectives in developing probabilistic models to describe unstable crack propagation
are essentially two fold. First, for a structure containing cracks of different sizes and subjected
to complexloading histories, we seek to determine limiting distributions for the (local) fracture
stress which couple remote loading (as measured by J or CTOD) with the operative fracture
mechanism at the microlevel. In the context of probabilistic models, a fracture parameter
associated with the limiting distribution then describes macroscopic fracture behavior for a
wide range of loading conditions and crack configurations. As a second objective, we seek to
predict unstable crack propagation in larger flawed structures on the basis of a probabilistic
fracture parameter. Experimentally measured values of fracture toughness for one configura-
tion (e.g., small laboratory specimens) are rationally extended to predict unstable crack propa-
gation for other crack configurations, provided similarities in both limiting distributions for
such a fracture parameter exist.

This study explores the development of a probabilistic (micromechanics) framework appli-
cable to cleavage fracture to predict effects of constraintloss and ductile tearing on macroscopic
fracture toughness. The presentation is given in three parts: Part I describes a probabilistic
model employing the statistics of microcracks and a local failure criterion to link the microre-
gime of fracture and macroscopic (remote) loading; Part II provides key features of the micro-
mechanics approach in characterizing fracture behavior under small scale yielding (SSY) con-
ditions [39]; the issue of parameter calibration and representative applications of the
methodology are presented in Part III [40]. Specifically in Part I, the random nature of cleav-
age fracture due to inhomogeneity in the local characteristics of the material drives the devel-
opment of a relationship to couple macroscopic fracture behavior with microscale events. For
stress-controlled, cleavage mechanisms of material failure, the Weibull stress (o,,) emerges as
a probabilistic fracture parameter defining conditions leading to (local) fracture. This parame-
ter permits predictions of the strong effects of constraint variations on (macroscopic) cleavage
fracture toughness over a wide range of loading and crack configurations. This study and its
sequels build upon previous work by Ruggieri and Dodds [21-23].



2. LIMITING DISTRIBUTION FOR THE FRACTURE STRESS IN 3-D

Cleavage fracture in low carbon, ferritic steels occurs primarily by the formation of microcracks
at carbides in regions which undergo inhomogeneous plastic deformation [26-28]. These
cracked carbides usually appear along grain boundaries and provide the cleavage nucleation
sites. The present work adopts the viewpoint that cleavage fracture is a two-stage process: a)
microcracks are generated due to localized and inhomogeneous plastic flow in a sufficiently
stressed region of the material [28] and b) unstable crack propagation occurs when the local
tensile stress acting on these microcracksreaches a critical tensile stress, 0.[29]. Without mak-
ing recourse to detailed metallurgical descriptions of the microscale fracture process, the near-
tip stressed region ahead of a macroscopic crack or a notch depicted in Fig. 1(a) defines the frac-
ture process zone; this region with size 5 ~ 10 CTOD (J) contains the potential sites for
cleavage nucleation.
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Figure 1 (a) Fracture process zone ahead a macroscopic crack containing randomly
distributed flaws; (b) Unit volume ahead of crack tip subjected to a multiaxial stress state.

Development of a limiting distribution for the fracture stress of a multiaxially stressed
cracked body begins by considering a stationary macroscopic crack lyingin material containing
randomly oriented microcracks (microflaws), uniformly distributed in location. Figure 1(b) il-
lustrates an arbitrarily stressed, unit volume Vnear a crack or a notch; the stress state isrepre-
sented by the principal stresses (o4, 05, 05). Two fundamental assumptions underlie the pres-
ent probabilistic framework: (1) the fracture process zone near the crack tip consists of a large
number of statistically independent, uniformly stressed, small volume elements, denoted 6V,
and (2) failure of this small volume element occurs when the size of a random flaw exceeds a
critical size, i.e., @ > a.. Based upon probability theory, the well-known Poisson postulates
(see, e.g., Feller [30]) provide two complementary assumptions: (1) failures occurring in non-
overlapping volumes are statistically independent events and (2) the probability of failure for
oVisproportional toitsvolume,i.e., 0P = uoVwhen 6Vissufficiently small. Here, the propor-



tionality constant u is the average number of flaws with size a > a. per unit volume. The ele-
mental failure probability, 0%, is then related to the distribution of the largest flaw in a refer-
ence volume of the material, which can be expressed as

[oe]

0P = 6Vj gla)da (1)

Qe

where g(a)da defines the number of microcracks per unit volume having sizes between a and
a+da.

Using a Taylor series expansion [31] of the exponential function e* (with second-order
terms neglected for sufficiently small x), the probability that no failure (probability of survival)
will occur in the volume element becomes
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gla)da = exp[— 6VI g(a)da] + 0©V) . (2)
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Now, invoking weakest link arguments to derive the distribution of failure for the entire
volume V (see Fig. 1), a “chain” analogy is readily established allowing proper interpretation
of the resulting limiting distribution. Within this context, V'is viewed as a chain consisting of
n small elements 0V so that failure of a single element leads to the collapse of the whole chain.
The failure probability of V, expressed by P, is then written in the form

Pp=1-[]a-o2), (3)

i=1

which is the familiar weakest link formulation applied to the volume V. Substituting Eq. (2)
in the above Eq. (3) and working out the resulting expression with n — « (and 0V; — dV), the
failure probability of V becomes

Py=1- exp[— j de g(a)da] ) 4)
1% a
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To arrive at a closed form for the failure probability of the unit volume V in terms of the
near-tip stressfield, an approximate description for the distribution of microcracksisrequired.
A common assumption adopts an asymptotic distribution for the microcrack density, g(a), in
the form [32, 33]

§
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where § and ¢ are parameters of the distribution and V|, denotes a reference volume. Now, the
implicit distribution of fracture stress can be made explicit by introducing the dependence be-
tween the critical microcrack size, a., and stress in the form a. = (K2/Yo?), where Y repre-
sents a geometry factor and o denotes a tensile (opening) stress acting on the microcrack plane.
Consequently, substituting Eq. (5) into Eq. (4) and working out the crack size integral yields
the expression for P in the form

P,=1—exp _VLOI(%) dVv (6)
%

where parameters m =2§ — 2 and o, define the microcrack distribution.

Employing the usual transformation of Cartesian coordinates (x;, x,, x3) in spherical coor-
dinates (r, 8, ¢) by the mapping (see Fig. 1)



X, = rsingcosf
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X3 = rcosq

the limiting distribution of the fracture stress for the unit volume V at a given load level (conve-
niently represented by </ in the present work) follows as

2T 7 m
Po) = 1 — exp| - #Vo f J (o%) singdodd ®)
0 0

where the specific integration of the (tensile) stress over the curvilinear coordinates (6, ¢) in-
cludes the random orientation of microcracks. Since the reference volume, V,;, only scales g(a)
but does not change the distribution shape, it has no effect on m and is assigned a unit value
for convenience in the computations. In the present work, the active fracture process zone is
defined as the loci where 0, = Ao, with 4 = 2. Alternative definitions for the fracture process
zone include the plastic region ahead of the macroscopic crack [9,16], o, = o, where o, denotes
the equivalent Mises stress.

Using again weakest link arguments, Eq. (8) can be generalized to any multiaxially
stressed region, such as the fracture process zone ahead of a macroscopic crack or notch (see
Fig. 1). Thus, the statistical problem of determining a limiting distribution for the fracture
strength of the entire solid is equivalent to determining the distribution of the weakest unit
volume V. The fundamental assumption is that the near-tip fracture process zone consists of
N arbitrary and statistically independent, unit volumes V. Consequently, the failure probabili-
ty of the cracked body when N — «, denoted as %, is given by

2T T m
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where 2 denotes the volume of the near-tip fracture process zone.

Equation (9) implicitly defines a zero threshold stress for fracture; consequently, stresses
vanishingly small compared to the fracture stress will yield a non-zero (albeit small) probabili-
ty for fracture. A more refined form for the limiting distribution for the fracture strength of a
cracked solid can be given as

21 7 m
Po) = 1 — exp| — —L 7" 9% Gingdpdods o=0 (10)
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where 0, is the threshold stress and has the physical interpretation of a lower bound strength
for fracture. The failure probability for the cracked solid is zero for any stress below o,,. Howev-
er, because the threshold stress represents a lower bound strength at the microscale level, a
“correct” value for 0,;,is a somewhat elusive concept which raises the question of its significance
in assessing the fracture behavior of flawed structures. Further, as shown by Ruggieri and
Dodds [21], such refinement does not appear to provide significant improvements in predic-
tions of the fracture behavior. Although the debate over a physically meaningful value for o,
hasobviousimportance, we adopt the simplest form of the limiting distribution for the fracture
stress by conveniently setting o0,, = 0 in Eq. (10). All subsequent results are equally valid for
any o,, = 0 (which should be adopted or known a priori) by simply defining o =0-— Oy

3. THE WEIBULL STRESS FOR STATIONARY AND GROWING CRACKS

In the probabilistic framework adopted here, the introduction of a probabilistic fracture pa-
rameter plays a key role in the development of procedures that unify toughness measures



across different crack configurations subjected to varying loading modes. Following the gener-
al development previously described, the Weibull stress (0,,), a term coined by the Beremin
group [9], is given by integration of the tensile stresses over the fracture process zone in the

form
2T 1/m
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from which the limiting distribution (9) can be rewritten as

Ploy) =1 — exp[— (Z—Z:)m] ) (12)

Equation (12) defines a two-parameter Weibull distribution [34] in terms of the Weibull
modulus m and the scale factor o,. Previous work [9, 19, 35] has shown that m takes a value
in the range 10 ~ 22 for typical structural steels.

The Weibull stress describes local conditions leading to unstable (cleavage) failure and ap-
pears, at least as a first approximation, to remain applicable during small amounts of ductile
crack extension. Highly localized, non-planar crack extension and void growth at the larger
inclusions, both of which occur over a scale of < d;. (the CTOD at onset of crack growth initia-
tion), should not alter the material properties m and o, over the much larger process zone rele-
vant for cleavage initiation. Further, small amounts of ductile crack growth modify the stress
history of material points within the process zone for cleavage fracture which affects directly
the evolution of Weibull stress. A detailed discussion of the approach adopted here for generat-
ing the evolution of the Weibull stress with o (or equivalently CTOD) for a growing crack is
given by Ruggieri and Dodds [21].

Figure 2 illustrates the development of the active fracture process zone (recall that the frac-
ture process zone is defined as the loci where 0, = Ao, with A = 2) given by a snapshot of the
stressfield ahead of the growing crack. Points on such a contour all lie within the forward sector

|6 | < /2. The envelope of all material points for which o, = Ao, during the history of growth
defines an alternative, cumulative process zone. Consequently, the 3-D form of the Weibull
stress for a growing crack becomes simply

2t pm 1/m
]l 1 I #
Ow = [47[‘/0 IQ L j o s1nq0dq0d0d!2] (13)
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where Q7 denotes the active volume of the fracture process zone, o, = 10, , which moves for-
ward with the advancingtip. The proposed generalization of ¢,, toinclude ductile tearing main-
tains the relative simplicity of computations while, at the same time, fully incorporating the
effects of alterations in the stress field ahead of the crack tip.

4. FINITE ELEMENT REPRESENTATION OF THE WEIBULL STRESS

This section briefly summarizes the finite element form of the Weibull stress expression for a
stationary and a growing crack, Eq. (11) and Eq. (13), employed in numerical computations
utilizing o,, [22]. In parametric space, the current (deformed) Cartesian coordinates x; of any
point inside a 8-node tri-linear element are related to the parametric coordinates #; through
the relationship [36]

8
x; = Zkaik , i=1,23 (14)
k=1
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Figure 2 Schematic representation for the evolution of the fracture process zone for a
growing crack. The crack has advanced from a=ag to a=ay + Aa.

where N, are the shape functions corresponding to node & and x;, are the current (deformed)
nodal coordinates, x; = X; + u;. The shape functions have standard form

3
N, = n(l +nmy » kR=1,.,8 (15)
=1

Qo[

where 7,, denotes the parametric coordinates of node k.

Let |J| denote the determinant of the standard coordinate Jacobian between deformed
Cartesian and parametric coordinates. Then using standard procedures for integration over
element volumes, the Weibull stress has the form

2t rm 1/m
|1 m
Oy = l IV, z j j j o s1nqod(pd0d!2e:| (16)
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where n,is the number of elements inside the fracture process zone near the crack tip and £,
is the volume of the element. The process zone used here includes all material inside the loci
0, = Ao, with A =2. For computational simplicity, an element is included in the fracture pro-
cess zone if the o, computed at 7, =7,=1715=0 exceeds 20,

2 rm 1/m
j j o™ |J | sinpdedOdn dnqdi :| (17)
0o Jo

Application of Eq. (17) requires a specific definition for the tensile stress, o, acting on the
microcrack. This tensile stress can be determined for each pair of coordinates (6, ¢) by adopting
aconvenient fracture criterion coupled with a geometric shape for the microcrack [18,22]. How-
ever, little agreement exists about which criterion most effectively describes cleavage fracture.
Usingthe simple, maximum principal tensile stress criterion to describe unstable crack propa-
gation, the Weibull stress takes the form
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which reflects the independence of the principal stress on the curvilinear coordinates (6, ¢).
This expression for the Weibull stress represents the integral form in parametric space of Bere-
min’s formulation [9].

5 CONCLUDING REMARKS

We have presented a probabilistic-based framework to predict the effects of constraint loss and
ductile tearing on macroscopic measures of cleavage fracture toughness (., d.) applicable for
ferritic materials in the ductile-to-brittle transition region. To model the statistics of
microcracks and the pronounced effects on scatter of measured /. -values in the transition re-
gion, we employ the Weibull stress, 0,,, as a near-tip, or local, fracture parameter; unstable
crack propagation occurs when o, attains a critical value. Both constraintloss and ductile tear-
ing affect the evolution of ¢,, under increasing applied «/ in common fracture test specimens.
Consequently, this parameter permits predictions of the strong effects of constraint variations
and ductile tearing on (macroscopic) cleavage fracture toughness over a wide range of loading
and crack configurations. The predictive capability of the micromechanics (probabilistic)
framework is explored in Parts II [39] and III [40] of this study.
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