CEOAERm 99

XV Congresso Brasileiro de Engenharia_Mecdnica

] B ra x @ ngress @ nica ngineering
22 -2 de Novembro de 1333/ November £ - 26, 1993 J'igr.raa de Linddéla, 580 Paulo,

A FRAMEWORK TO CORRELATE EFFECTS OF CONSTRAINT LOSS
AND DUCTILE TEARING ON FRACTURE TOUGHNESS -
PART lll : PARAMETER CALIBRATION AND FRACTURE TESTING

Claudio Ruggieri
Department of Naval Architecture and Ocean Engineering, University of Sao Paulo
S&o Paulo, SP 05508-900, E-mail: cruggi@usp.br, Brazil

Abstract - This paper presents a newly developed procedure to calibrate the Weibull stress parameters
(m, 0,) which builds upon a scaling methodology to correct measured toughness distributions for differ-
ent crack configurations. Detailed numerical analyses employing a modified boundary layer (MBL)
model and 3-D finite element analyses for a standard 1(T) SE(B) specimen show the strong effect of
constraint loss on individual fracture toughness values for different material properties. Such results
provide compelling support to construct the parameter calibration scheme proposed in this study. The
calibration procedure is then applied to determine the Weibull stress parameter, m (the Weibull modu-
lus) for a structural C-Mn steel (BS 4360 Grade 50D).
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1. INTRODUCTION

Parts I and II of this article [1,2] described a methodology, based upon a local failure model
employing the statistics of microcracks (weakest link philosophy), to predict the strongly inter-
acting effects of constraint variations and ductile tearing on (macroscopic) cleavage fracture
toughness (/). In particular, a probabilistic fracture parameter — the Beremin’s Weibull stress
(0w) [3]- was introduced to provide a robust coupling between the microregime of fracture and
macroscopic crack driving forces (such as the J-integral). Applications of this methodology in
fracture assessments relies on the notion of the Weibull stress as a crack-tip driving force [4-7].
The central feature in the predictive framework is the simple axiom that unstable crack propa-
gation (cleavage) occurs at a critical value of the Weibull stress; underincreased remote loading
(asmeasured by <J), differences in evolution of the Weibull stress reflects the potentially strong
variations of near-tip stress fields. In this context, the Weibull modulus, m, plays a major role
in the process to correlate effects of constraint loss and ductile tearing for varying crack config-
urations. Consequently, robust schemes to calibrate the Weibull parameters (m, ¢,) become a
key element in fracture assessment procedures based upon .

A number of studies has demonstrated the potential capability of Weibull stress based ap-
proaches to predict constraint and ductile tearing effects on measured distributions of /.-val-
ues and CTOD-values for structural steels [4,10,15]. The apparent success of these research
efforts has prevented, until recently, a more active pursuit of improved schemes to calibrate



parameters (m, 0,). In spite of the promise evident in those works, difficulties still persist in
the calibration of Weibull stress parameters under specific testing conditions as details of the
analysis procedures (e.g. finite strain plasticity, 2-D vs 3-D, etc.) and the mesh refinement
adopted to compute the stress fields become a key factor in the calibration process using frac-
ture specimens. Large m-values accentuate the small differences in computed stresses ahead
of a blunting crack tip which strongly affect the calibrated value.

Previously developed procedures to calibrate parameters (m, o,) (see [3, 4-6, 10] for addi-
tional details) employ measured toughness data for cleavage fracture (such as J.-values) to
define corresponding values of the Weibull stress at fracture, denoted o, .; these values form
the basis upon which the Weibull parameters for the material are estimated without making
recourse to detailed micromeasurements. Such a widely adopted methodology builds upon an
iterative procedure incorporating a finite element description of the crack-tip stress fields and
measured values of fracture toughness. However, as convincingly demonstrated by Gao et al.
[11] and Ruggieri et al [12], a major point of criticism of this calibration process is that a non-
uniqueness arises in the calibrated values, i.e., many pairs of (m, 0,) provide equally good cor-
relation of critical Weibull stress values with the measured distribution of toughness data.
Moreover, these works clearly show that it is not possible to calibrate a unique (m,o,) pair us-
ing only a single data set of toughness values.

This paper presents a newly developed procedure to calibrate the Weibull stress parame-
ters (m, 0,) which builds upon a scaling methodology to correct measured toughness distribu-
tions for different crack configurations. Detailed numerical analyses employing a modified
boundary layer (MBL) model and 3-D finite element analyses for a standard 1(T) SE(B) speci-
men show the strong effect of constraint loss on individual fracture toughness values. The pro-
cedure quantifies the extent of large scale yielding (LLSY) that developsin the fracture specimen
as the initially strong small scale yielding (SSY) conditions diminish as deformation prog-
resses. Such results provide compelling support to construct the parameter calibration scheme
proposed in this study. The calibration procedure is then applied to determine the Weibull
stress parameter, m (the Weibull modulus) for a structural C-Mn steel (BS 4360 Grade 50D).

2. COMPUTATIONAL PROCEDURES AND FINITE ELEMENT MODELS

2.1. Finite Element Procedures

The three-dimensional computations reported here are generated using the research code
WARP3D [13] which: (1) implements a Mises constitutive models in a finite-strain framework,
(2) solves the equilibrium equations at each iteration using a linear pre-conditioned conjugate
gradient (LPCG) method implemented within an element-by-element (EBE) software archi-
tecture, (3) evaluates the J-integral using a convenient domain integral procedure and (4) ana-
lyzes fracture models constructed with three-dimensional, 8-node tri-linear hexahedral ele-
ments.

The finite element computations employ a domain integral procedure [14] for numerical
evaluation of theJ-Integral. A thickness average value forJ is computed over domains defined
outside material having the highly non-proportional histories of the near-tip fields and thus
retains a strong domain (path) independence. Such J-values agree with estimation schemes
based upon eta-factors for deformation plasticity [16]. They provide a convenient parameter
to characterize the average intensity of far field loading on the crack front.

2.2. Constitutive Models

The elastic-plastic material employed in the analyses follows a ¢/, flow theory with convention-
al Mises plasticity. The uniaxial true stress-logarithmic strain curve obeys a simple power-
hardening model,
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where 0, and ¢, are the reference (yield) stress and strain, and n is the strain hardening expo-
nent.

Section 3 describes numerical solutions for the SSY boundary-layer model with 7'=0 and
astandard 1(T) SE(B) specimen with a/W = 0.5. These finite element analyses consider materi-
al flow properties covering most structural and pressure vessel steels: n =5 (E/o,=800), 10
(E/oy,=500) and 20 (E/o,=300) with E =206 GPa and v =0.3; these ranges of properties also
reflect the upward trend in yield stress with the decrease in strain hardening exponent charac-
teristic of ferritic steels. For the SE(B) specimens used in the fracture testing described in Sec-
tion 4, the numerical solutions utilize a piecewise linear approximation to the measured tensile
response for the material at the test temperature, T'= — 120°C given in [15].

2.3. Finite Element Models of SE(B) Specimens and SSY Model

3-D finite element analyses are described for a plane-side deep notch (a/W= 0.5) SE(B) speci-
men with B=25mm [1(T)] and conventional geometry (W/B =2). Here, a denotes the crack
length and Wisthe specimen width. Fracture toughness tests at different lower shelf tempera-
tures for a structural steel (BS 4360 Grade 50D) [15] were performed on the 3-point SE(B) spec-
imens with size 0.5(T) and 2(T). Figure 1(a) shows the geometry and specimen dimensions of
the SE(B) specimens employed in the analyses.

Figure 1(b) shows a typical finite element model constructed for analyses of the 1(T) SE(B)
specimen. All other crack models have very similar features. A conventional mesh configura-
tion having a focused ring of elements surrounding the crack front isused with a small key-hole
at the crack tip; the radius of the key-hole, g, is 10um (0.01mm). Symmetry conditions enable
analyses using one-quarter of the 3-D models with appropriate constraints imposed on the
symmetry planes. The mesh has 14 variable thickness layers defined over the half-thickness
(B/2); the thickest layer is defined at Z =0 with thinner layers defined near the free surface
(Z=B/2) to accommodate strong Z variations in the stress distribution. The quarter-symmet-
ric, 3-D models for the SE(B) specimens typically have 18500 nodes and 16000 elements. These
finite element models are loaded by displacement increments imposed on the centerplane
nodes for the outermost 2 layers of elements (i.e., the two outermost row of nodes on the crack
ligament plane - loading point region in Fig. 1(b)). A typical solution to load the specimen to
J =100 kJ/m? uses 100 load increments and requires ~10 CPU hours on a CRAY J-90 super-
computer.

Numerical solutions for stationary cracks under well-defined SSY conditions (with the 7-
stress term set to zero, i.e., T'=0) are generated by imposing displacements of the elastic, Mode
I singular field on the outer circular boundary with radius R which encloses the crack (r = R).
Such analyses follow the modified boundary layer (MBL) model [17] already described in Part
IT of this study [2].

Evaluation of the Weibull stress requires integration over the process zone, including the
region as r — (. The SSY and all other crack models previously described have a small initial
root radius at the crack front (blunt tip) which provides two numerical benefits: (1) it acceler-
ates convergence of the finite-strain plasticity algorithms during the initial stage of blunting,
and (2) it minimizes numerical problems during computation of the Weibull stress over materi-
al incident on the crack tip. To maintain consistency with the finite element models for the
SE(B) specimens used to construct the JJ; ¢~ ¢/ gy corrections, the SSY model has the same
mesh configuration at the crack tip as the SE(B) models. The SSY model has one thicknesslay-
er of 2065 8-node, 3-D elements with plane-strain constraints imposed on all nodes.
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Fig. 1. SE(B) specimens with aW =0.5 employed in the analyses (all units in mm).

3. CALIBRATION OF WEIBULL STRESS PARAMETERS

3.1 Weibull Stress Based Constraint Corrections

This section describes the results of detailed numerical analyses employing the MBL model
and 3D finite element analyses for the standard SE(B) specimens with size 1(T) to assess ef-
fects of constraint loss onindividual fracture toughness values for different material properties
and specimen configurations. The objective is to demonstrate the strong effect of parameter
m (Weibull modulus) on oJ; ¢y~ J ggy corrections. These results serve to introduce the frame-
work to construct the parameter calibration scheme presented in the next section.

Figure 2 illustrates the procedure to assess the effects of constraint loss on fracture tough-
ness needed to construct J; ¢y vs. J ggytrajectories. Very detailed, nonlinear 3-D finite element
analyses provide the functional relationship between the Weibull stress (0,,) and the applied
loading (J) for a specified value of the Weibull modulus, m. The research code WSTRESS [6]
is employed to compute the Weibull stress for all analyses. Based upon the argument of the
Weibull stress as the crack driving force, the scaling model requires the attainment of equal
values for g, to trigger cleavage fracture across different specimen geometries, here denoted
Owc, €ven though J-values may vary widely due to constraint loss. Figure 2 shows curves of
o, Us.d for a standard fracture specimen (the present work employs only 1(T) deep notch SE(B)
specimens) and for a plane-strain, SSY reference solution (7'/o,=0) with the same thickness
of the fracture specimen. Such curves are constructed for a fixed, representative value of the
Weibull modulus, m, for each set of mechanical properties flow properties (the normalizing vol-
ume for the Weibull stress, V, is conveniently assigned the value of 1 mm?3). J; ¢ values com-
puted from the domain integral procedures in the finite element analyses of the SE(B) speci-




mens represent thickness average values, which are consistent with experimental (average)
values defined using a plastic eta-factor and the measured areas under the load-load line dis-
placement curve [16]. For the plane-strain SSY model, / ¢y becomes simply the J value at the
crack tip. Given the J; ¢y value for the fracture specimen, the lines shown on Fig. 2 readily illus-
trate the technique used to determine ¢/ ggy.

Fixed m ‘

Jssy sy J

Fig. 2. Toughness scaling model used to construct J; sy — Jssy corrections.

Figure5(a-d) providesthe constraint corrections (LSY — SSY) for the 1(T) SE(B) specimens
with different material properties (n =5 with E/o,=800; n =10 with E/o,=500; n =20 with
E/0,=300) and for varying Weibull moduli, m. The present computations consider values of
m =10, 15, 20, 25 and 30 to assess the sensitivity of constraint corrections on the specified Wei-
bull modulus. These m-values are consistent with previously reported values for structural
steels. Each curve provides pairs of J-values, J; ¢yin the SE(B) specimen and «J/ ¢y in SSY, that
produce the same o,,. Reference lines are shown which define a constant ratio of “constraint
loss”, e.g., J g =1.2 X Jy which implies that the SE(B) average ¢ must be 20% larger than the
SSY value to generate the same Weibull stress. For each value of the Weibull modulus, the
SE(B) and SSY curves agree very well early in the loading history while the SE(B) specimen
maintains near SSY conditions across the crack front (recall that computation of ¢, in the
SE(B) specimens considers the entire crack front). Once near-front stresses deviate from the
(plane-strain) SSY levels, the o, curves for the SE(B) specimens fail to increase at the same
rate with further loading. These results clearly illustrate the gradual nature of constraint loss
in the deep-notch SE(B) specimens, especially for moderate to low hardening materials. The
Weibull modulus does have an appreciable effect on predictions of constraint loss; increasing
m values indicate a higher load level at the onset of constraint loss and a reduced rate of
constraint loss under further loading. The larger m values, in effect, assign a greater weight
factor to stresses at locations very near the crack front. The bending field, which impinges on
the crack front, affects the smaller m curves more readily.



3.2 Parameter Calibration Using Jisy — Jgsy Trajectories

The previous results exhibit the essential features of Weibull stress based constraint correc-
tions for a key specimen geometry. Each SSY toughness value corrected from its corresponding
LSY value reflects both the effects of stressed near-tip volume and the strong changes in the
character of the near-tip stress fields due to constraint loss. Further, in the context of probabil-
istic fracture mechanics, each pair (J ¢gy, J; ¢y) on a given m-curve defines equal failure proba-
bilities for cleavage fracture. Motivated by these observations, the alternative parameter cal-
ibration scheme uses the scaling methodology previously outlined to correct measured
toughness distributions for different crack configurations. The procedure extends previous
work by GRD [11] to calibrate parameter (m, o,) using high constraint (LSY) and low
constraint (SSY) fracture toughness data measured at the same temperature and loading rate.
Because each measured J; ¢y-value is corrected to its equivalent J ¢y -value, the statistical
(Weibull) distribution of J; ¢y -values is also corrected to an equivalent statistical (Weibull) dis-
tribution of </ ¢¢y-values.

Development of the calibration procedure begins by considering a statistical distribution
for the toughness data. Using weakest link statistics, the well known two-parameter Weibull
function conveniently characterizes the distribution of toughness values in the form (see, e.g.,
[18])

F(J.) =1 — exp| — (#) . (2)
0

Here, a is the Weibull modulus (shape parameter) for the J -distribution and ¢/, is the charac-
teristic toughness (scale parameter). This limiting distribution remains applicable for other
measures of fracture toughness, such as K;, or CTOD. Previous work has also demonstrated
that, under SSY conditions, the scatter in cleavage fracture toughness data is characterized
by a = 2 for Jdistributions [10] or a = 4 for K -distributions [8].

Consequently, our scheme defines the calibrated value of m for the material as the value
that corrects the characteristic toughness o ](;S Y (i.e., the scale parameter of Eq. (2)) to its equiv-
alent J5%Y. Because parameter m is assumed independent of specimen geometry (as long as
the framework upon which the Weibull stress is based remains valid), the scheme remains
equally applicable when two sets of fracture toughness data from different crack configura-
tions, but with sufficient differences in the evolution of ¢,, vs.J, are used (e.g., 1(T) SE(B) speci-
mens with a/W=0.5 and a/W=0.15).

The following steps describe a summary of key procedures in the proposed calibration
[11,12]. Section 4 illustrates the process for a ferritic structural steel (BS 4360 Gr 50 D).

Step 1

Test two sets of specimens with different crack configurations (A and B) in the DBT region to generate
two distributions of fracture toughness data. Select the specimen geometries and the common test tem-
perature to insure different evolutions of constraint levels for the two configurations. No ductile tearing
should develop prior to cleavage fracture in either sets of tests.

Step 2

Perform detailed, 3-D finite element analyses for the tested specimen geometries. The mesh refine-
ments must be sufficient to insure converged 0, vs. J histories for the expected range of m-values and
loading levels.

Step 3

3.1 Assume an m-value. Compute the 0, vs. JJ history for configurations A and B to construct the
toughness scaling model relative to both configuration.



3.2 Constraint correct o/ B to its equivalent J; A _ (.e., the corrected value of the scale parameter
for the assumed m- Value) Define the error of toughness scaling as R(m) = (JA JA)/JA If
R(m)=0, repeat 3.1-3.2 for additional m-values.

3.3 Plot R(m) vs. m. The calibrated Weibull modulus makes R(m)= 0 within a small tolerance.

Step 4

Compute the o,-value. After m is determined, 0, is obtained easily from the oy, vs. J history for the
calibrated m-value. 0, equals the Weibull stress value at J = J Aord = J in the corresponding configu-
ration.

4. CALIBRATION OF WEIBULL MODULUS FOR A STRUCTURAL STEEL

4.1 Fracture Toughness Testing Using SE(B) Specimens

Wiesner and Goldthorpe [15] provide cleavage fracture toughness values at different lower
shelf temperatures obtained from testing of 3-point SE(B) specimens (plane-sided) with fixed
crack length to width ratio, a/W= 0.5, and varying specimen tickness, B. The specimens have
B=12.5mm, 25mm and 50mm with width W= 2B and span S = 8B (refer to Fig. 1). The materi-
alis a ferritic C-Mn steel (BS 4360 Grade 50D) with high strain hardening (o, /0, = 1.53). Me-
chanical tensile test data for this material is presented in ref. [15].

Figures 3 provides a Weibull diagram of the measured toughness values for the test temper-
ature T'= — 120°C. The open symbols in the plots indicate the experimental fracture toughness
data for the SE(B) specimens. Values of cumulative probability, F, are obtained by ordering the
J.values and using F =(i-0.5)/N, where i denotes the rank number and N defines the total
number of experimental toughness values. The straight lines indicate the two-parameter Wei-
bull distribution obtained by a maximum likelihood analysis of the data set. The maximum
likelihood estimates («, J ) for each data set are: (1.5, 44.3) for the 0.5(T) specimen; (2.6, 51.6)
for the 1(T) specimen and (1.4, 29.3) for the 2(T) specimen. Note that the a-values of the Weibull
distribution for J. deviate significantly from a =2.

4.2 Parameter Calibration

The procedure used here to calibrate the Weibull stress parameters for the C-Mn steel follows
the proposed scheme outlined in Section 3.2. In the present application, we calibrate parame-
ter m by scaling the measured toughness distribution for the 0.5(T) SE(B) specimen to an
equivalent toughness distribution for the 2(T) SE(B) specimen. Very detailed finite element
computations of these specimens enables construction of the J 5q) — o) correction shown
in Fig. 4. The calibration process simply becomes one of determining an m-value that corrects
J 8 5D to its equivalent o g(T)

A central feature of this methodology also lies in the choice of parameter a describing the
scatter of the toughness distribution. The procedure adopts a fixed value a =2 to describe the
distribution of J .-values which makes contact with the probabilistic treatment of fracture un-
der SSY conditions based upon weakest link statistics [6,11,12]; however, previous analyses
[12] reveal a week dependence of J, on a. For the SE(B) specimens with B=12.5mm at
T = —120°C, the maximum likelihood estimate of J 8 5T with a =2 is 49.3 kJ/m? and differs by
11% from the previous value of 44.3 kJ/m? (recall the large deviations of the Weibull modulus
from a = 2 for this data set). Similarly, for the SE(B) specimens with B=50mm at T'= — 120°C,
the maximum likelihood estimate of J)°™ with a =2 is 34.0 kJ/m? and differs by 12% from the
previous value of 29.3 kJ/m2. With the introduction of a fixed value a = 2, our calibration proce-
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Fig. 3. Weibull plots of toughness values at T = —120°C.

dure yields m =15 for the steel tested at T'= — 120°C. Figure 4 illustrates the graphical proce-
dure to determine parameter m.
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5. CONCLUDING REMARKS

Our extensive numerical analyses to assess constraint loss effects (LSY — SSY) for standard,
deep notch SE(B) specimens demonstrate the strong influence of the Weibull stress parameter
m (Weibull modulus) on o ¢y~ ¢ g4y corrections. These analyses provide support to introduce
an alternative, improved procedure based upon a toughness scaling model to calibrate the Wei-
bull stress parameters, (m, 0,). The toughness scaling model enables construction of Weibull
stress based constraint corrections for experimentally measured J.-values to provide the Wei-
bull parameters for a structural C-Mn steel (BS 4360 Grade 50D). Further work is in progress
to validate the proposed procedure as a more general and robust scheme to calibrate the Wei-
bull stress parameters for several crack configurations and its implication on predictions of
toughness distributions and fracture assessment procedures.
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