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Summary. Natural c onvection in a thermally-driven open cavity is analysed numerically.

The vertical wall is he ate dand the horizontal walls ar eadiabatic. The other vertical wall

is open to a 
uid reservoir. L aminarand two-dimensional 
ow is assumed for Rayleigh

number ranging from 103 to 107. The 
uid is aproximately air with Prandtl number �xed

at 1.0. The pr oblem is solved numerically by using the Finite Volume-SOLA method.

The average Nusselt number is reported for di�erent values of the Rayleigh number. The

aspect ratio of the op encavity is done as L=H = 0.5, 1.0, 3.0 and 6.0, where L is the

cavity width andH is the cavity height. The main characteristics of the 
ow and the heat

transfer pr ocessis discussed.
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1. INTRODUCTION

Natural conv ectionphenomenon in closed cavities has been intensively studied in the

last years. We can report the works Hortmann et al. (1990) e L�e Qu�ere (1991). Howev er,

natural conv ection in open cavities which has many practical applications, namely, build-

ing insulation, solar cavit y receivers and cooling of electronic components has received less

attention. In the n umericalpapers related to this subject, Chan e Tien (1985a), Chan e

Tien (1985b), Angirasa et al. (1992) and Mohamad (1995) limited their computational

domain to within the ca vity without considers the region around of the opening, where

is di�cult to impose the boundary conditions. For low Rayleigh numbers, it is necessary

to extend the computational domain beyond the opening. Thus, the Nusselt number will



not be a�ected.

As showed in Fig. 1, the cavity has both horizontal walls adiabatic and the vertical

one is maintained heated. The 
ow is generated by the variations in the density around

the heated wall.

The proposed geometry was solved by Chan e Tien (1985a) for Rayleigh number

ranging from 103� 109 using a unity Prandtl number. They found that for high Rayleigh

numbers, Ra > 106, it seems a recirculation zone on the bottom wall, due the incoming


ow turning around the corner. The external region near the opening need to be consid-

erated in order to model the problem properly. The aspect ratio of the open cavity was

B = 1:0. An aspect ratio B = 7:0 was studied by Chan e Tien (1985b). In that work

they examine the e�ect of the imposition of the boundary conditions in the opening of the

cavity versus an extended domain. They concluded that it is reasonable to use the �rst

condition for the shallow cavity, and that it is possible to foresee the main heat transfer

characteristic parameters.

Angirasa et al. (1992) studied the problem using the Vorticity-Stream Function

method and the computational domain con�ned to within the open cavity. They in-

clude a discussion about the boundary condition speci�cation for the vorticity and the

stream function in the opening.

A laminar solution for Rayleigh number in the range 103�107 was done by Mohamad

(1995). He reports results for the cavity inclination and the aspect ratio B = 0:5, 1.0 e

2.0. He found that the local Nusselt numbers is very sensible to the cavity inclinations

and it promoves little variations on the average Nusselt number. The 
ow is instable for

high Rayleigh numbers and for little cavity inclinations. All the results are obtained with

the computational domain con�ned to the cavity. The region outside of the cavity is not

considered in the solution.

The purpose of this work is to discuss the aspect ratio e�ect B = 0:5, 1.0 e 3.0

and 6.0 in the heat transfer process from the heated vertical wall inside the cavity. The

computational domain was extended so it was not necessary to specify the boundary

conditions in the opening.

2. PROBLEM FORMULATION

The cavity geometry and the boundary conditions are showed in Fig. 1. The open

cavity is the L � H domain. The extended domain is the region b � Z, where Z = 5H.

The vertical wall inside the cavity is mantained at constant temperature Th and the 
uid

reservoir (or ambient) at To. Laminar 
ow is assumed and the Boussinesq approximation

is considerated valid. The dimensionless variable are de�ned below.

(X; Y ) =
(x; y)

H
(1)

(U; V ) =
(u; v)H

�
(2)

� =
�t

H2
(3)

T =
T � � T �

1

(T �h � T �
1
)

(4)



P =
(p� p1)H

2

��2
(5)

where T � indicates the dimensional temperature value.

Using the variables above, one can write the dimensionless conservation equation for

mass, momentum and energy in transient form as
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where the quantities Pr = �=� and Ra = g�H3(T �h � T �
1
)=�� are the Prandtl and the

Rayleigh numbers, respectively.
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Figure 1: Geometry and the coordinate system

The boundary conditions at the borders showed in Fig. 1 are

� (1) U = V = @T=@X = 0

� (2) U = V = @T=@Y = 0

� (3) U = V = 0 e T = 1



� (4) U = V = @T=@Y = 0

� (5) U = V = @T=@X = 0

� (6) (@U=@Y ) = V = Tin = 0

� (7) U = V = (@T=@X = 0)out ou Tin = 0

� (8) (@U=@Y ) = (@V=@Y ) = (@T=@Y )out = 0

The average Nusselt number on the hotted wall, Nu, is de�ned as

Nu =

Z
1

0

 
@T

@X

!
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dY = Nu(Ra; Pr; B) (10)

The dimensionless stream function is

	(X; Y ) = �

Z X

Xo

V (X; Y )dX +	(Xo; Yo) (11)

where the value 	(Xo; Yo) is zero in the solid walls.

The volumetric mass rate is de�ned as

_m =

Z
Opening

UindY (12)

Uin = UX=b=H if UX=b=H > 0

Uin = 0 if UX=b=H � 0

3. NUMERICAL PROCEDURE

The equations above are discretized using the Finite Volume Method (Patankar, 1980)

for the spatial discretization and the SOLA method for the time discretization (Hirt

et al. (1975)). The SOLA method consists of advancing in the time the velocity and

the pressure �elds from a previous values of velocities, stopping the procedure when

convergence criteria is reached

max

������
n+1

� �n

�n+1

����� < 10�5 (13)

onde � = U; V; T e Nu.

The numerical code was validated by checking this with the Chan e Tien (1985b)

results. For example, at Ra = 106 and using 21� 21 points inside the cavity, the values

obtained for Nu and _m are 15.0 and 47.3 against 15.0 and 47.6 obtained by Chan e Tien

(1985b).

For an aspect ratio like as B =1.0 and Ra = 105, when the points inside the cavity is

increased from 21�21 to 31�31, the Nusselt number variation is less than 0.2%.

4. RESULTS AND DISCUSSION

In this section is showed the e�ects of the aspect ratio B = 0:5, 1.0, 3.0 and 6.0

and the Rayleigh number ranging from 103 � 107, in the heat transfer process from the
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Figure 2: Isothermals and streamlines for B = 1:0

heated vertical wall of the open cavity. An unit Prandtl number is considered, which is

aproximately air.

In the following �gures, the contour maps showing the isotherms and the streamlines

were plotted. The intervals between the isotherms are always �T = 0:1 and for the

streamlines it is showed together with the �gure. Only the region near of the open cavity

is showed.

Figures 2, 3 and 4 show the isotherms and streamlines for B = 1:0, 3.0 and 6.0. In

each �gure, we show in letter a-) the results for Ra = 103 and in letter b-) the results for

Ra = 106, characterizing the conduction limit and the boundary layer regime, respectively.

The results for B = 0:5 are not plotted because they seem like the one for B = 1:0. The

di�erences are that for B = 0:5, the hotted wall a�ect a larger region near the opening.

Figures 2a, 3a and 4a show the isotherms and streamlines for Ra = 103. We can see

that the conduction is the dominant heat transfer mechanism. When the cavity becomes

deeper, the isotherms are distribuited along the cavity and the streamlines pattern are

symmetric and similar.

Figures 2b, 3b and 4b show the isotherms and streamlines for Ra = 106. As we can

see, in this case appears near of the hotted wall the boundary layer strucuture. The 
uid

penetrates into the cavity and is acelerated by the hotted vertical wall, leaving the cavity
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Figure 3: Isothermals and streamlines for B = 3:0

adjacent to the upper horizontal adiabatic wall.

From a thermal engineering standpoint, two other characteristics are very important,

namely, the average Nusselt number of the hotted vertical wall, Nu, and the volumetric


ow rate, _m, entering into the cavity. Fig. 5 shows the Rayleigh number e�ect on the

average Nusselt number as function of the aspect ratio B. We can see that the behaviour

of B = 0:5 and B = 1:0, have the same aspect. For Ra higher than 105, every cases are

analogous to the vertical 
at plate behaviour, as is showed by the Ra1=4 scale. For the

conduction limit, Ra = 103, the Nusselt number can be write just a function of the aspect

ratio

Nu �=
H

L
= (B)�1 (14)

When Ra � 106, the Nu is independent of the aspect ratio, because the convective

e�ects generated by the boundary layer is the dominant heat transfer mechanism.

Figure 6 represents the volumetric 
ow rate entering into the open cavity, _m. While

the convection is not dominant, Ra < 105 and the cavity becomes deeper, less 
ow is

entering by the opening. Otherwise, when Ra > 105, the depth cavity induces more mass

into the cavity. When B increases, the 
ow enteres horinzontally into the cavity and as

result, the _m is bigger.

Figure 7 shows the U velocity component pro�le and the temperature pro�le in the

exit of the cavity, for Rayleigh number 103, 105 and 107, respectively. When the Rayleigh

number is low, Ra = 103, Figure 7a, the velocity pro�le is practicely symmetric. Because

the hotted wall has a longer distance from the opening, when B increases, the 
uid



temperature is close to the 
uid reservoir temperature.
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Figure 4: Isothermals and streamlines for B = 6:0

Figure 7a, 7b and 7c show the e�ect of the increase of the Rayleigh number. The


uid entering into the cavity occupies practicely 2/3 of the opening at Ra = 105 and 4/5

at Ra = 107. This situation occurs for all aspect ratios B. The 
uid lying the upper

horizontal wall lets the cavity forming a jet. Such jet turns right the upper corner and

ascends near the vertical wall.

For Ra = 105 and Ra = 107, the temperature pro�le shows that in the openingt, the


uid temperature of the 
ow entering into the cavity has nearly the 
uid temperature of

the reservoir, To = 0. On the upper horizontal adiabatic wall appears a high temperature

gradient, Fig. 7c.
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5. CONCLUDING REMARKS

In this work we studied natural convection in a thermally-driven open cavity. We

studied the aspect ratio B = L=H = 0:5, 1.0, 3.0 and 6.0 and the Rayleigh number e�ects

ranging from 103 � 107.

When Ra � 105, the boundary layer appears on the vertical heated wall and the

average Nusselt number follows the power-law Ra1=4, which is validated for boundary

layer on a vertical 
at plate. For the conduction limit, when Ra � 103, the average

Nusselt number is expressed by the Eq. (14), Nu �= H=L = (B)�1.

The domain Ra� _m has the value Ra = 105 as a point where the curves for the aspect

ratios change the slop.
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Figure 7: U velocity component and temperature pro�le in the opening
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