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Abstract. A stochastic problem of optimal launcher trajectory design is considered. The solid
propellant launcher motor has uncontrollable thrust deviations. Both a thrust and initial state
vector variations are random variables. It is necessary to minimize a criterion connected with
dispersion of terminal state vector components. New numerical algorithm for the problem
solution is proposed. This algorithm based on Monte-Carlo method modification. It is
possible to obtain the optimal stochastic control program in pitch and yaw channels and to
reduce the criterion using this program.
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1. INTRODUCTION

This paper considers the problem of optimal stochastic program design for a penultimate
stage of Brazilian four-stage solid-propellant launcher VLS.

The necessity of this problem solution is connected with inadmissible dispersions of
termina state vector components due to random disturbances. The initial state vector
components and uncontrollable solid propellant motor thrust deviations are random. Such
random disturbances were out of consideration during the nominal control program design.
Attempt to reduce the dispersion of terminal state vector components using the stochastic
control program is the purpose of this paper.

The problem of terminal dispersion minimization was traditionally solved considering
simplified or linear models of motion. Only approximate solution could be received in this
case.

It is necessary to use afull nonlinear mathematical model for the exact problem solution.

Such problem solution is possible using a Monte-Carlo method (Sobol, 1973). But that
approach results to inadmissible computational expenditures.

A new accelerated method of stochastic control program design presented in this paper
was developed. A so-called confidential approach (Malyshev and Kibzun, 1987; Kibzun and
Kan, 1996) is the base of the new method. It will be possible to reduce computational



expenditures for stochastic control program design in this case in comparison with a method,
based on the Monte-Carlo simulation.

2. PROBLEM STATEMENT
A discrete model of launcher center mass motion is considered (Malyshev et a., 1996):
Zh1 = 2+ (W(t 1) cOSI(t;) cosy () + G, ),

281 =77 +(W(t; 1) Siny(t;) + Gy) 7,
23, = 22+ (AW(t; , 1) Sin(t;) cosy () + G,) 7,
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Here z; = col (z},...,z°) is a state vector; z' =V,, z¥ =V, z7 =V, ae velodities;
z¥ =X, 22 =Y, z® = Z - coordinates; W(t;,®,) - athrust acceleration; w; € N(0]) - a
random parameter; G,,G,,G, - gravity accelerations; J(t;) - apitch program; v (t;) - a
yaw program; z - adiscretetime step; t; =iz - atime.

A mean value vector m, and a covariance matrix K, describe an initial launcher state
vector. In this case, the initial state vector can be represented as a linear function of random
parameters w; € N(0]),i = 27.

The launcher motion model Eg. (1) can be represented in the most genera form, i.e. as a
discrete stochastic system:

z.. = fi(z,u,%), i=:L_N. )

Here z =col(zl,...zZ") is a state vector at the instant i; f;() - a continuous and
differentiable vector function; u; :col(uil,...uf'):coI(S(ti),w(ti )) =col(9;,y;) are
parameters of a control vector at the instant i; x =col(>%,...x") - is a vector of random
disturbances at the instant i; X = X (@),i=1 N, =col(ey,...7), N is total number of

steps.
A terminal criterion describing successful launcher mission implementation as a random
event isinvolved:

J=F(zy:1) 3)

This criterion is continuous and differentiable with respect to argument zy,4 -

According to the model Eq. (2), properties of the terminal state vector z,,, depend upon
the random vector Xx=col(x,...Xy), the random vector @, and control vector
u=col(w,...uy) - Then the criterion Eq. (3) can be represented as follows:



J=F(zp.1(u0)) =0(u,m). (4)

The criterion ®(u,x) is a random variable. Therefore, it is impossible to use such
criterion in optimization problem directly.
Consider quantile (Mayshev and Kibzun, 1987):

0, (u) = mirlp : P, (u) > a}, (5)
where

P,(U) =Pl :0(u,0) < ¢} (6)

The problem isto minimize quantile ® , (u) by choosing u;,i=1N:

O, = inL(Da(u), (7)
u,i=LN

where control vector components u;, i = 1,N arefunctions of a step number only.

3. EQUIVALENT OPTIMIZATION PROBLEM

The so-called confidentia approach for the problem Eq. (5), (6) solution (Mayshev and
Kibzun, 1987; Kibzun and Kan, 1996) is used. According to this approach the initial problem
Eq. (5), (6) can be replaced by the equivalent problems:

O, = inf_inf supO(u,w). (8)

U i=LN EeEq geE

O, = inf_ sup infO(u,w). (9)
u,i=1LN DY weD

Here EcE,, is a confidential set with a probabilistic measure o, defined in a space of the

vector o, and D e EY% isaconfidential set with a probabilistic measure 1-a..
It is convenient to use equivalent optimization problems by a pair:

EcE, u,i=LN geE

O, = inf inf_sup(u,o)
5 (10)

(U)= sup infOU",w)["
DEEl—aa)ED

Both an optimal control vector U and an optimal confidential set E~ have to be

calculated using the first equation, and an optimum confidential set D" iscalculated usi ng the
second equation. It is possible to check values of both upper and lover quantile estimates in
paralel.



4. ALGORITHM OF CONTROL PROGRAM OPTIMIZATION

The algorithm of control program optimization based on the equivalent problems of a
probabilistic optimization problem includes the following steps:
1. The required probability magnitude o should be given in advance.

2. The initial approximation of control vector magnitude u® is set. The series of fixed
directions r', i= 1, p that purposed for control program optimization is set also.

3. Theinitial confidential set Ey,P(Eg) = « is set as sphere, and the set Dy = R \E is
Set.

4. The random point network Ay, consisting of points o', i=1K
created.

5. The function ®(u,®) is calculated in all specified points w',i=1K of the network
A, with a specified vector u° as ®(u°,'),i =1L K.

6. A set of the following pointsin Egis determined:

in the space R’ is

oV =argmadOu®,e'), j=1s. (11)
i=1,K

A set of the following pointsin Dy is determined:

o) =argmind(u®,0'), j=19. (12)
i=1LK

7. Thefollowing integrated system in inverse time for each o'l j =15 iscaculated:

A (z U0 F(z
¥ = (74 )LPi+1’\PN+1:M (13)
O’Zi ﬁzN+1
. . L ﬁi(zi,ui,a)*j) . .
The expression for the partial derivatives ,i=1LN should be obtained

24
analytically in advance. It should be noted that magnitudes of vectors z,i =1,N had been
calculated before (item 5). The following magnitudes are cal culated simultaneously:

o’tl)(u,a)*j) _ Fi(z, 4 15()*]) N
Ay AY;

w0i=LN, (14)

: . . . O'fi(zi,ui,a)*j) . T .
where the expressions for the partial derivatives T ,i=1,N should be obtained
i

anaytically in advance.
8. Vadlidity of the following condition is checked up:



min & EY .o (15)
rii=Lp A’
where
* *j .
0"" a)*J,j=1, Al

Let's assume that the control program in a case of condition Eg. (16) fulfillment is an
optimal one u”(E,) . Thetransition to item 11 is performed.
Otherwise, the search direction is selected as:

r'®=arg _mlgd:*(l.z’u) . (17)
ri-Lp A’
9. The following approximation of control vector is calculated:
ul =u®+n°r . (18)
10. The following condition fulfillment is checked up:
‘@ <&¢, (29)

where ¢ >0 - aspecified value. Let’s assume that the control program in a case of condition

Eq. (19) fulfillment is an optima one u'(Eg). In this case transition to the item 11 is
conducted.
Otherwise, transition to the item 5 is conducted, with a substitution of u® instead of u°.

11. The function ®(u,®) is caculated in al specified points ®',i=1K of the network
A, with a specified vector u"(Ey) , resultingin ®(u” (Eg),»'),i=1 K.

12. A set of points @™}, j=1s using expression Eq. (11) and a set of points .’
j =1,q using expression Eq. (12) are determined.

13. Validity of the following condition is checked up:

d(U" (Dg), @1) = DU (Eg), 0 1). (20)

If the both sets (E~ and D”) in a case of condition Eq. (20) fulfillment are optimal,
transition to the item 16 is implemented. Otherwise, transition to the item 14 is performed.

14. One point @.’ istransmitted from the set Dy to the set Ej.

15. One point "} istransmitted from the set Ep totheset Dy.
Finally both anew sets E; and D are determined.



16. Assume a sphere of maximum volume is included in the set E~ as the subset
Q, c E". Assume also a sphere of minimum volume is circumscribed rather the set E, i.e.

the subset Q3 E . The subset Qzcomplements subset Q5 till the whole space R’,
Q5 =R"\Qj3. The subset Q,complements subset (Q; UQj3) till the whole space R,
0,=R"\Q; \Q,.

17. Assume that new K redlizations w;, i=K+12K of random vector » with the
probability density p;(w) in the space R’are calculated. The random point network A,
consisting both the old points w',i=1K and the new points w;, i =K +1,2K, is created in
space R”.

18. The function ®(u,w) is calculated in al new specified points w;, i =K+12K of

network A; with a specified vector u*(E*) as CI)(u*(E*),a)i),i= K+12K. The optima
control vector u (E*) is considered as initial approximation u®. The transition to the item 6
is conducted.

5. THE PROCEDURE OF RANDOM POINTSNETWORK CREATION

The procedure of the random points network creation consists of the following steps:
1. Assume that we have to obtain K realizations w;, i =1, K of random vector » with the

initial probability density p(w) in the space R’. The points w;, i=1,K are considered as

points of network A. Each point @; belongs to the set 6;(x)=6; eR’, i=1K with a
K K

probabilistic measure P(6;) =1/K , i=1K, | J&; =R", Y P(6;) =1.

i=1 i=1
2. The initid set Eg, which is the sphere of ry radius with the probabilistic measure

P(E,), is set in R’ space. The set D, complements the set E, to space R’:
Do = Eg = R” \Ey, and it has a probabilistic measure P(Dg) =1- P(Ey) .

—_— I —_—
3. Assume that the set E, includesthe sets ¢;, i=11: Eo=(J6;, w; € Eq, i=11, and

i=1
— K —
set Dg includesthesets 6;, i=1+1K: Dy= | J6;, w; € Dy, i=1+1LK.Then
i=l+1
| K
P(Ep) » D P(6;(»; € Eg)), P(Dg) » Y P(6;(w; € Dy)). (21)

i=1 i=l+1

4. Suppose that some set 0 (w; € Eg) is transferred from the set Ej to the set Dy, and
some set 0 (wy € Dg) istransferred from the set D, to the set Ey. Asaresult the set Eg has

both: a negative volume increment 5Eg = ¢; and a positive volume increment 5Eg = 6. The



set Dy has aso both: the negative volume increment SEj = 6Dy and the positive volume
increment 0By = oD .

5. The volume increment SE§ = 8D, corresponds to a probabilistic measure increment
P(6Eg) =P(6Dg) =P(0;). The volume increment JEg =6Dg corresponds to the

probabilistic measure increment P(6Eg) = P(6D() = P(6,) -
6. Thefollowing new sets E; and D, are resulted of two sets ¢ and 6, transfer:

E; = (Eo WEg) UJES, (22)

Dy = (D \WDg) U D, (23)
with the probabilistic measures

P(E;) = P(Eo) +P(dEg) —P(5Eo) , (24)

P(Dy) =P(Dg) + P(0D§) —P(6Dg) =1-P(Ey). (25)

Note, that the previous expressions are formally correct in a case if only one set - 9; or
0\ istransferred.

7. Assume that the space R is subdivided on three not intersected subsets Q;, Q,, Q3
with  probabilistic measures  P(Q;), P(Q,) and P(Q3) correspondingly,
R =0,UQ,UQ,, iP(Qi) = 1. Accept the first subset Q; as a sphere with the radius r; .

i=1

Accept the subset Q5 as a sphere by a radius r, > r;. The third subset Qgcomplements
subset Q) till the whole space R?, Q3 =R’ \Q3. Accept the second subset Q, as aring
with internal radius r; and external radius r, . The subset Q. complements subset (Q; U Q)
to thewhole space R’, Q, = R” \Q; \Q3.

8. Involve a new probability density:

k1<1,COEQJ_

pi(e) =k (@), Kk >Lo Q. (26)
k1<1,0)€Q3

Assume that we have to obtain K redlizations w;, i =1,K; of random vector o with the

probability density p;(w) in the subset Q;, K, redlizations w;, i=1,K, with the
probability density p;(@) inthesubset Q,, K5 redizations w;, i:l—K3 of random vector
o with the probability density p;(®) in the subset Q3, K; + K, + K3 =K. The points o;,
i=1 K are considered as new points of network A. The total number of points (taking into



account the first realization series) is equal to 2K. The each point »; belongs to a set
0;(x)=0; eR’, i=12K with the probabilistic measure P(d;)=P(Q;) /K5 in a case
w; € Q4, or with the probabilistic measure P(6;) = P(Q,) /Kox inacase w; € Q5, or with a
probabilistic measure P(6;) = P(Q3) /K3y inacase o; € Q3.

9. Now it is possible to repeat items 2 —8 with new probabilistic measures P(6;) of the

sets 6;, 1 =12K.
6. NUMERICAL RESULTS
The control program optimization technique consists in utilization the numerical

algorithm described above.
Basic expressions used are the following.

An addition variable zi7 =@, and an appropriate equation for zi7 are introduced:
=7 (27)

A joint system Eq. (1), (27) is considered. The initial state vector z, = col(z{,...z{) of
joint system is describe as:

2 = Ao + B, (28)

Where:A=H'AtL j‘ B:H%H o =col(wy,03,0,4,05,0,07 1), the mean vector

m, = B, and the covariance matrix K, = Aj Al .
A (z,u)

Consider the partial derivatives matrix of the joint system as:

L0 o _m(rz—a(zi;‘wo)z) m(a(zr‘+5ro)zf’) m(s(zr‘+5ro>zf‘) M

r r r a
010 w®E) N EE &

I’ r r

4z6 3zi52i6 —_— 3(zi6)2 7 I
001 ur( s = e s ) — ut( i ) pu (29)
r 00 1 0 0] 0
07 O 0] 1 0] 0
0 0~ 0] 0 1 0
00O 0] 0 0] 1

Here n - a gravity constant; ry - the Earth radius, r — a distance between the Earth center and
amass center of alauncher,



r=y(X+r0)2+Y2+22; (30)

7
ﬁi - aW(t,;z. )COSQ(ti)COSV(ti)T ;
oz 0z

7
ﬁ? _ GW(t,;Z, )Sim](ti)r’ (31)
oz 0z

7

ﬁg; __ 5W(t'7’z' ) sindg(t; ) cosy(t, ).
z 0z

Also, consider the partial derivatives matrix

M of the joint system as:

~W(t; ,z)zsind(t;) cosp(t;) Wt .2z )z cosd(t;) sinp(t;)
0 W(t; , z)z cosy(t;)

~W(t; , 2 )z cosd(t;) cosy(ty)  W(t; ,z)zsing(t;) sinp(t;)
0 0 : (32)

0 0
0] 0
0] 0

The expressions obtained above are substituted in the numerical algorithm of control
program optimization, described above.
Both the nominal and the optimal pitch programs are shown on Fig. 1.
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Figure 1 - Nominal and optimal pitch programs



Main peculiarities of the numerical results of control program optimization are the
following.

The gquantile magnitude corresponding to the initial nominal control program in pitch and
yaw channelsis equal to 0,862.

The quantile magnitude corresponding to the optimal control program in pitch and yaw
channelsisequal to 0,811.

This result shows that it is possible to reduce the quantile magnitude to 5,9%.

This improvement is explained by a solid propellant motor thrust singularity. The
“maximal” thrust corresponds to “minimal” motor burnout time and the “minimal” thrust
correspond to “maximal” motor burnout time. Moreover, the “maximal” and the “minimal”
thrust result to different terminal state vector deviations.

The thrust singularity was out of consideration during the nominal control program
design. The nominal thrust was taken into account only.

The optimal control program was designed considering random thrust properties. The
first part of optimal program partialy compensates the “maximal” thrust; the second part
partially compensates the “minimal” thrust.

The obtained results also show the advantage of the offered optimization algorithm in
comparison with an optimization algorithm, based on a standard Monte-Carlo simulation
procedure. The computation expenditures are reduced in two times.

7. CONCLUSION

The following results was obtained in this paper:

1. The new numerical algorithm of stochastic control program optimization is offered.
This algorithm has high efficiency in comparison with optimization algorithm, based on
standard Monte-Carlo simulation.

2. The stochastic problem of launcher control program optimization was solved. It is
possible to reduce the terminal criterion on 5,9% in comparison with the deterministic
nominal control program.
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